Инжекторные двигатели отличаются отсутствием карбюратора, вместо которого выступают новые системы подачи топливных смесей. При надавливании на педаль газа происходит автоматическое регулирование поступления воздуха в топливные цилиндры.
Контроль бензиновых растворов производит специальное электронное устройство, внедренное в двигатель. Подача топлива в инжекторном двигателе отличается конструктивными особенностями, способствующими уменьшению количества вредных веществ, выбрасываемым в атмосферу.
Одноточечный..
ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.
Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.
Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.
Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.
Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.
Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.
Регулировка многоточечного впрыска
Прежде чем рассмотреть принцип регулировки впрыска, стоит учесть, что каждая модификация ТС имеет свои тонкости работы. Поэтому и настройка системы может происходить по-разному. Вот как выполняется процедура в случае с самыми распространенными модификациями.
Bosch L3.1, MP3.1
Прежде чем приступать к настройке такой системы, нужно:
- Проверить состояние зажигания. В случае необходимости изношенные детали меняются на новые;
- Убедиться, что дроссель работает исправно;
- Устанавливается чистый воздушный фильтр;
- Прогревается мотор (пока не включится вентилятор).
Вначале настраивается холостой ход. Для этого на дросселе имеется специальный регулировочный винт. Если поворачивать его по часовой стрелке (закручивается), то показатель оборотов ХХ будет снижаться. В противном случае – увеличиваться.
В согласии с рекомендациями завода-изготовителя на систему устанавливаются анализаторы качества выхлопа. Далее снимается заглушка с регулировочного винта подачи воздуха. Поворотом этого элемента настраивается состав ВТС, о чем будет указывать анализатор отработанных газов.
Bosch ML4.1
В данном случае холостой ход не выставляется. Вместо этого к системе подключается упомянутый в предыдущем обзоре прибор. По состоянию выхлопных газов при помощи регулировочного винта настраивается работа многоточечного распыления. Когда рука проворачивает винт по ходу часовой стрелки, состав СО будет увеличиваться. При повороте в другую сторону этот показатель уменьшается.
Bosch LU 2-Jetronic
Такая система регулируется на число оборотов ХХ так же, как и первая модификация. Настройка обогащения смеси производится при помощи алгоритмов, прошитых в микропроцессоре блока управления. Этот параметр корректируется в соответствии с импульсами лямбда-зонда (подробней об устройстве и его принципе работы читайте отдельно).
Bosch Motronic M1.3
Обороты холостого хода в такой системе регулируются, только если газораспределительный механизм имеет 8 клапанов (4 на впуск, 4 на выпуск). В 16-клапанниках ХХ корректируется электронным блоком управления.
8-клапанник регулируется по той же схеме, что и предыдущие модификации:
- ХХ настраивается винтом на дросселе;
- Подсоединяется анализатор СО;
- При помощи регулировочного винта настраивается состав ВТС.
Некоторые автомобили оснащены такой системой, как:
- ММ8Р;
- Bosch Motronic5.1;
- Bosch Motronic3.2;
- Sagem-Lukas 4GJ.
В этих случаях отрегулировать ни холостые обороты, ни состав воздушно-топливной смеси не получится. Производитель таких модификаций не предусмотрел такой возможности. Всю работу должен выполнять ЭБУ. Если электроника не смогла настроить работу впрыска корректно, значит, имеются какие-то системные ошибки или поломки. Их выявить можно только при диагностике. В самых сложных ситуациях некорректная работа ТС обусловлена поломкой блока управления.
Распределенный
ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.
Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).
Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.
Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.
Проведение техобслуживания систем питания инжекторных двигателей
Мероприятия по техническому обслуживанию систем питания обладают особенностями:
- В процессе эксплуатации моторов наиболее часто подвергаются загрязнениям и выходу из строя воздушные фильтры. Каждые тридцать тысяч километров пробега необходимо менять фильтрующий элемент на новый экземпляр
. Рекомендуется также регулярно очищать извлеченный узел от грязи и пыли при помощи щетки и встряхивания. - Возникновение рывков при движении машины говорит о необходимости замены фильтра, производящего тонкую очистку топлива. Рекомендуется также производить плановые замены после очередных 30 тыс. км пробега.
- Форсунки подвергаются регулярным проверкам, производится замена регулятора холостого хода.
Работоспособность любого транспортного средства, в первую очередь, обеспечивается исправной работой его «сердца» — двигателя. В свою очередь, составляющей частью стабильной деятельности этого «органа» есть слаженная работа системы впрыска, с помощь которой подается необходимое для работы топливо. На сегодняшний день, благодаря множеству преимуществ, она полностью вытеснила карбюраторную систему. Главным положительным моментом ее использования является наличие «умной электроники», обеспечивающей точную дозировку топливовоздушной смеси, что повышает мощность транспортного средства и существенно увеличивает топливную экономичность. К тому же, электронная система впрыска в значительно большей степени помогает придерживаться строгих экологических норм, вопрос соблюдения которых, в последнее время, приобретает все большей актуальности. Учитывая вышесказанное, выбор темы данной статьи более чем уместен, так, что давайте рассмотрим принцип работы этой системы более детально.
Принцип работы электронного впрыска топлива
Электронная (или более известный вариант названия «инжекторная») система подачи топлива может устанавливаться на автомобили как с бензиновыми, так и с Однако, конструкция механизма в каждом из этих случаев, будет иметь существенные различия. Все топливные системы можно разделить за такими классификационными признаками:
— за способом подачи топлива выделяют прерывистую и непрерывную подачу;
За типом дозирующих систем различают распределители, форсунки, регуляторы давления, плунжерные насосы;
За способом управления количеством подаваемой горючей смеси – механические, пневматические и электронные;
За основными параметрами регулировки состава смеси – разряжение во впускной системе, при угле поворота дроссельной заслонки и расходе воздуха.
Система впрыска топлива современных бензиновых двигателей имеет либо электронное, либо механическое управление. Естественно, более совершенным вариантом является электронная система, так как она в значительно лучшей степени может обеспечить экономию топлива, сокращение уровня выброса вредных токсичных веществ, увеличение мощности мотора, улучшение общей динамики машины и облегчение «холодного пуска».
Первой, полностью электронной системой, стал продукт, выпущенный американской компанией Bendix
в 1950 году. Спустя 17 лет, аналогичное устройство создала и компания Bosch, после чего оно было установлено на одну из моделей
Volkswagen.
Именно это событие положило начало массовому распространению системы электронного управления впрыском топлива (EFI — Electronic Fuel Injection), при чем не только на спортивных автомобилях, но и на транспортных средствах класса «люкс».
Полностью электронная система использует для своей работы (топливные форсунки), вся деятельность которых базируется на электромагнитном действии. В определенные моменты рабочего цикла двигателя, они открываются и остаются в таком положении на протяжении всего времени, необходимого для подачи того или иного количества топлива. Тоесть, время открытого состояния – прямо пропорционально требуемому количеству бензина.
Среди полностью электронных систем впрыска топлива, выделяют следующие два типы, отличающиеся в основном только способом измерения воздушного потока: систему с непрямым измерением воздушного давления
и с
прямым измерением воздушного потока.
Такие системы, для определения уровня разрежения в коллекторе, используют соответствующий датчик (MAP — manifold absolute pressure). Его сигналы направляются на электронный модуль (блок) управления, где учитывая аналогичные сигналы поступающие с других датчиков, перерабатываются и перенаправляются на электромагнитную форсунку (инжектор), что и вызывает ее открытие на нужное для поступление воздуха время.
Хорошим представителем системы с датчиком давления есть система Bosch D-Jetronic
(литера «D» — давление). Работа системы впрыска с электронным управлением базируется на некоторых особенностях. Сейчас мы опишем отдельные из них, характерные для стандартного типа такой системы (EFI). Начнем с того, что она может быть подразделена на три подсистемы: первая -отвечает за подачу топлива, вторая — за всасывание воздуха, ну а третья является электронной системой управления.
Структурными частями системы подачи топлива есть топливной бак, топливный насос, подающий топливопровод (направляющий от распределителя для топлива), топливную форсунку, регулятор давления топлива и обратный топливопровод. Принцип действия системы следующий: с помощью электрического топливного насоса (размещается внутри или рядом с топливным баком), бензин выходит из бака и подается в форсунку, а все загрязнения отфильтровываются с помощью мощного встроенного топливного фильтра. Та часть топлива, которая не была направлена через форсунку во всасывающий трубопровод, возвращается в бак через обратный топливопривод. Поддержание постоянного давления топлива обеспечивает специальный регулятор, отвечающий за стабильность этого процесса.
Система всасывания воздуха состоит из дроссельного клапана, всасывающего коллектора, очистителя воздуха, впускного клапана и воздухозаборной камеры. Принцип ее действия такой: при открытом дроссельном клапане, воздушные потоки проходят через очиститель, затем через расходометр воздуха (им оборудуются системы типа L), дроссельный клапан и качественно настроенный впускной патрубок, после чего попадают во впускной клапан. Функция направления воздуха в двигатель требует наличия привода. По ходу открытия клапана дросселя, в цилиндры мотора попадает значительно большее количество воздуха.
В некоторых силовых агрегатах применяются два разных способа измерения объема входящих воздушных потоков. Так, например, при использовании системы EFI (тип D), воздушный поток измеряют при помощи проведения мониторинга давления во всасывающем коллекторе, тоесть косвенно, в то время как аналогичная система, но уже типа L делает это напрямую, используя специальное устройство – расходометр воздуха.
В состав электронной системы управления входят следующие виды датчиков:
двигателя, электронного управляющего блока (ECU), устройства топливной форсунки и соответствующей проводки.
С помощью указанного блока, путем мониторинга датчиков силового агрегата определяется точное количество подаваемого форсунке топлива. Что бы подавать в мотор воздух/топливо в соответствующих пропорциях, блок управления запускает работу форсунок на конкретный период времени, которые именуют «шириной импульса впрыска» или «продолжительностью впрыска». Если описывать основной режим работы системы электронного впрыска топлива, с учетом уже названных подсистем, то он будет иметь следующий вид.
Попадая в силовой агрегат через систему всасывания воздуха, воздушные потоки измеряются с помощью расходометра. Когда воздух оказывается в цилиндре, происходит его смешивание с топливом, в чем не последнюю роль играет работа топливных форсунок (расположенных за каждым впускным клапаном всасывающего коллектора). Эти детали являются своеобразными электроклапанами, которые управляются электронным блоком (ECU). Он посылает на форсунку определенные импульсы, используя для этого включение и выключение цепи ее заземления. Когда она включена, происходит открытие и топливо распыляется на заднюю часть стенки впускного клапана. При попадании в подающийся снаружи воздух, оно смешивается с ним и испаряется благодаря низкому давлению всасывающего коллектора.
Сигналы, посылаемые электронным блоком управления, обеспечивают такой уровень подачи топлива, который будет достаточным для достижения идеального соотношения пропорций воздух/топливо (14,7:1), называемого еще стехиометрией.
Именно ECU, исходя из измеренного объема воздуха и оборотов мотора, определяет основной объем впрыска. В зависимости от условий эксплуатации двигателя, этот показатель может изменяться. Блок управления отслеживает такие сменные величины как скорость двигателя, температура тосола (охлаждающей жидкости),содержания кислорода в выхлопных газах и угол расположения дросселя, в соответствии с чем производит корректировку впрыска, определяющую окончательный объем впрыскиваемого топлива.
Безусловно, система питания с электронным дозированием топлива, превосходит карбюраторное питание бензиновых двигателей, поэтому нет ничего удивительного в ее широкой популярности. Системы впрыска бензина, из-за наличия огромного числа электронных и подвижных прецизионных элементов, являются более сложными механизмами, поэтому, требуют высокого уровня ответственности в подходе к вопросу обслуживания.
Существование системы впрыска дает возможность более точно распределить топливо по цилиндрам мотора. Это стало возможным, благодаря отсутствию дополнительного сопротивления воздушному потоку, которое на впуске создавали карбюратор и дифузоры. Соответственно, повышения коэффициента наполнения цилиндров напрямую влияет на увеличения уровня мощности двигателя. Давайте же сейчас рассмотрим более детально все положительные моменты использования системы электронного впрыска топлива.
Плюсы и минусы электронного впрыска топлива
К положительным моментам стоит отнести:
Возможность более равномерного распределения топливо-воздушной смеси.
Каждый цилиндр имеет собственную форсунку, подающую топливо непосредственно на впускной клапан, что позволяет избежать необходимости подачи через всасывающий коллектор. Это способствует улучшению его распределения между цилиндрами.
Высокоточность контролирования пропорций воздуха и топлива, в независимости от эксплуатационных условий двигателя.
С помощью стандартной электронной системы, в двигатель поступает точная пропорция топлива и воздуха, что значительно улучшает дорожные качества транспортного средства, топливную экономичность и контроль за выхлопными газами. Улучшение работоспособности дросселя. Благодаря подачи топлива непосредственно на заднюю стенку впускного клапана, можно оптимизировать работу всасывающего коллектора, повысив тем самым скорость движения воздушного потока через впускной клапан. За счет таких действий улучшается крутящий момент и рабочая эффективность дросселя.
Повышение топливной экономичности и улучшение контроля токсичности выхлопных газов.
В двигателях, оснащенных системой EFI, обогащение топливной смеси при холодном запуске и широко открытой дроссельной заслонке, поддается сокращению, так как смешивание топлива не является проблематичным действием. За счет этого, появляется возможность экономии топлива и улучшения контроля за выхлопными газами.
Улучшение эксплуатационных качеств холодного двигателя (в том числе и пусковых).
Возможность впрыска топлива сразу на впускной клапан, в сочетании с улучшенной формулой распыления, соответственно повышает пусковые и эксплуатационные возможност холодного мотора. Упрощение механики и снижение чувствительности к регулировке. При холодном старте или измерении топлива, система EFI не зависит от регулировки обогащения топливной смеси. А поскольку, с механической точки зрения, она отличается простотой, то и требования к ее техническому обслуживанию снижены.
Однако, ни один механизм не может обладать исключительно положительными качествами, поэтому, в сравнении с теми же карбюраторными двигателями, моторы с электронной системой впрыска топлива имеют некоторые недостатки. К основным из них относят: высокую стоимость; практически полную невозможность ремонтных действий; высокие требования к составу топлива; сильную зависимость от источников электропитания и необходимость постоянного наличия напряжения (более современный вариант, который контролируется электроникой). Также, в случае поломки, не получится обойтись без специализированного оборудования и высококвалифицированного персонала, что выражается в слишком дорогостоящем обслуживании.
Диагностика причин неисправностей системы электронного впрыска топлива
Возникновение неполадок в системе впрыска – не такое уж и редкое явление. Особенно актуальным этот вопрос есть для владельцев старых моделей автомобилей, которым не раз приходилось сталкиваться как с обычным засорением форсунок, так и с более серьезными проблемами по части электроники. Причин неисправностей, часто возникающих в данной системе, может быть очень много, однако наиболее распространенными среди них есть следующие:
— дефекты («брак») конструктивных элементов;
Граничный срок службы деталей;
Систематическое нарушение правил эксплуатации автомобиля (использование низкокачественного топлива, загрязнения системы и т.д.);
Внешние отрицательные воздействия на конструктивные элементы (попадание влаги, механические повреждения, окисление контактов и др.)
Наиболее надежным способом их определения является компьютерная диагностика. Этот вид диагностической процедуры основывается на автоматическом фиксировании отклонений параметров системы от установленных значений нормы (режим самодиагностики). Обнаруженные ошибки (несоответствия) остаются в памяти электронного блока управления в виде так называемых «кодов неисправностей». Для проведения этого метода исследования, к диагностическому разъему блока подключают специальное устройство (персональный компьютер с программой и кабелем или сканер), задача которого считать все имеющиеся коды неисправностей. Однако, учтите – кроме специального оборудования, точность результатов проведенной компьютерной диагностики, будет зависеть от знаний и навыков человека который ее проводил.
Поэтому, доверять процедуру следует только квалифицированным сотрудникам специальных сервисных центров.
В компьютерную проверку электронных составляющих системы впрыска входи
т:
— диагностика топливного давления;
Проверка всех механизмов и узлов системы зажигания (модуля, высоковольтных проводов, свечей);
Проверка герметичности впускного коллектора;
Состава топливной смеси; оценка токсичности отработанных газов по шкалах СН и СО);
Диагностика сигналов каждого датчика (используется метод эталонных осцилограмм);
Проверка цилиндрической компрессии; контроль отметок положения ремня ГРМ и много других функций, которые зависят от модели машины и возможностей самого диагностического аппарата.
Проведение указанной процедуры необходимо если Вы хотите узнать имеются ли неисправности в системе электронной подачи (впрыска) топлива и если есть, то какие. Электронный блок EFI (компьютер) «помнит» все неисправности лишь пока система подключена к аккумуляторной батареи, если клемму отсоединить – вся информация исчезнет. Так будет, ровно до того момента, пока водитель вновь не включит зажигание и компьютер наново не проверит работоспособность всей системы.
На некоторых автомобилях, оборудованных системой электронной подачи топлива (EFI), под капотом имеется коробочка, на крышке которой Вы сможете заметить надпись «DIAGNOSIS»
. К ней еще подведен довольно толстый жгут разных проводов. Если коробочку открыть, то с внутренней стороны крышки будет видна маркировка выводов. Возьмите любой провод и с его помощью замкните выводы
«Е1»
и
«ТЕ1»
, после чего сядьте за руль, включите зажигание и наблюдайте за реакцией лампочки «CHECK» (на ней изображен двигатель).
Обратите внимание!Кондиционер обязательно должен быть в выключенном состоянии.
Как только Вы повернете ключ в замке зажигания, указанная лампочка начнет мигать. Если она «моргнет» 11 раз (или больше), через равный промежуток времени, это будет значить, что в памяти бортового компьютера нет информации и с поездкой на полную диагностику системы (в частности и электронного впрыска топлива) можно повременить. Если вспышки будут хоть как-то отличаться – значит стоит обратиться к специалистам.
Такой способ «домашней» мини-диагностики доступен не всем владельцам транспортным средств (в основном только иномарок), но тем у кого есть такой разъем, в этом плане повезло.
Подписывайтесь на наши ленты в
Впрыск топлива — это система дозированной подачи топлива в цилиндры двигателя. Расскажем про электронные системы подачи топлива
, как они работает и из каких датчиков состоят.
Как работает система впрыска топлива?
На рисунке схематично показан принцип работы распределенного впрыска.
Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход или давление в ресивере.
Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.
Датчик положения коленвала (ДПКВ)
— считывает частоту вращения коленвала и его положение. Служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик массового расхода воздуха (ДМРВ)
— определяет массовый расход воздуха, поступающего в двигатель. Служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик температуры охлаждающей жидкости (ДТОЖ)
— следит за температурой охлаждающей жидкости. Служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Сигнал ДТОЖ подается только на электронный блок управления, для индикации на панели используется другой датчик.
Датчик положения дроссельной заслонки (ДПДЗ)
— определяет положение дросселя (нажата педаль «газа» или нет). Служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик детонации
— служит для контролем детонации двигателя. При обнаружении последней, блок управления двигателем включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания. В первых системах впрыска применялся резонансный датчик детонации, пришедший с системы GM. Сейчас повсеместно используются широкополосные датчики.
Датчик скорости (ДС)
— определение скорость движения автомобиля. Используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.
Датчик фазы (ДФ)
— определяет положение распредвала. Служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно — параллельную (групповую) систему подачи топлива.
Датчик неровной дороги
— служит для оценки уровня вибраций двигателя. Это необходимо для правильной работы системы обнаружения пропусков воспламенения, чтобы определить причину неравномерности (применяется в связи с вводом норм токсичности Евро-3).
Модуль зажигания
— электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в цилиндрах. В последних модификациях низковольтные элементы модуля зажигания помещены в электронный блок управления, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.
Регулятор холостого хода
— служит для поддержании заданных оборотов холостого хода. Представляет собой шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания холостого хода при закрытой дроссельной заслонке.
Вентилятор системы охлаждения
— управляется электронным блоком управления по сигналам датчика температуры охлаждающей жидкости. Разница между включением/выключением как правило 4-5°С.
Сигнал расхода топлива
— выдается на маршрутный компьютер — 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами.
Адсорбер
— является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.
Подробнее в статье: «Что такое адсорбер? «
Электронный блок управления
Электронный блок управления
— специализированный микрокомпьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами.
Сама программа хранится в микросхеме ПЗУ, английское название микросхемы — CHIP. Содержимое «чипа» — обычно делится на две функциональные части — собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки — набор (массив) фиксированных данных (переменных) для работы программы управления.
Следует иметь ввиду, что для правильной работы системы впрыска необходимо наличие исправных датчиков
и исполнительных механизмов.
Непосредственный..
“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.
ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.
В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.
Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.
Что значит последовательность впрыска
Последовательность или фазы впрыска топлива обусловлена следующими показателями:
- За один отработанный цикл двигателя каждая специальная форсунка отрабатывает одну фазу впрыска;
- Время этой фазы для каждой модели автомобиля может быть разным, но при этом количество топлива в большинстве случаев одинакова.
Распределенный впрыск топлива внедряется не на каждый автомобиль, поскольку он отличается тем, что подходит только для инжекторных автомобилей. Автовладельцы, которые сталкиваются с этой системой, отмечают, что она позволяет достичь до 15 % экономии топлива.
Прямой впрыск топлива – хорошо или плохо?
Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?
Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.
Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.
Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.
В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.
Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:
Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:
Проверка многоточечного впрыска
Нарушение схемы подачи бензина происходит по причине выхода из строя одного из элементов. Вот по каким симптомам можно распознать неисправности системы впрыска:
- Двигатель запускается с большим трудом. В более критических ситуациях мотор вообще не заводится.
- Нестабильная работа силового агрегата, особенно на холостых оборотах.
Стоит обратить внимание на то, что данные «симптомы» не являются характерными исключительно для инжектора. Подобные проблемы происходят и в случае неполадок с системой зажигания. Обычно в таких ситуациях помогает компьютерная диагностика. Эта процедура позволяет быстро определить источник сбоев, из-за которого многоточечный впрыск происходит неэффективно.
В большинстве случаев специалист просто сбрасывает ошибки, которые мешают блоку управления правильно настраивать работу силового агрегата. Если компьютерная диагностика показала поломку или неправильную работу механизмов распыления, то прежде чем приступить к поиску вышедшего из строя элемента, необходимо устранить высокое давление в магистрали. Для этого достаточно отключить минусовую клемму аккумулятора, и ослабить затяжку крепежной гайки в магистрали.
Существует еще один способ понизить напор в магистрали. Для этого отсоединяется предохранитель бензонасоса. Дальше мотор запускается, и работает, пока не заглохнет. В этом случае агрегат сам выработает напор топлива, находящегося в рампе. В завершение процедуры предохранитель устанавливается на свое место.
Сама система проверяется в следующей последовательности:
- Проводится визуальный осмотр электрической проводки – нет ли окисления на контактах или повреждения изоляции кабеля. Из-за таких неисправностей питание может не поступать на исполнительные механизмы, и система либо перестает работать, либо работает нестабильно.
- Состояние воздушного фильтра играет немаловажную роль в работе топливной системы, поэтому важно проверить его.
- Проверяются свечи зажигания. По нагару на их электродах можно распознать скрытые неполадки (подробно об этом читайте отдельно) систем, от которых зависит работа силового агрегата.
- Проверяется компрессия в цилиндрах. Даже если топливная система исправна, при низкой компрессии мотор будет менее динамичным. О том, как проверяется этот параметр, есть отдельный обзор.
- Параллельно с диагностикой ТС нужно проверить зажигание, а именно, корректно ли выставлен УОЗ.
После того, как были устранены неполадки в работе впрыска, нужно выполнить ее регулировку. Вот как выполняется данная процедура.
Как работает непосредственный впрыск и так ли он хорош
Дифирамбов прямому впрыску достаточно написано в рекламных материалах. А мы попробуем говорить относительно беспристрастно.
Что такое непосредственный впрыск
Это такое устройство топливной системы, при котором бензин впрыскивается форсункой прямо в цилиндр. Этим он отличается от впрыска “обыкновенного” – когда форсунка впрыскивает топливо во впускной коллектор.
Называть эту систему инновационной, пожалуй, уже поздновато – она была реализована на многих самолетах времен Великой Отечественной войны. Так, например, она была применена на истребителе Ла-5ФН.
А вот на автомобилях относительно массовой она стала уже в конце двадцатого-начале двадцать первого века, примерно с появлением электронного управления двигателем. Это в первую очередь была фирма Mitsubishi с системой, которую они назвали GDI. Потом за ними потянулись и другие японские марки – так, например, можно назвать Toyota с двигателем D-4. Потом все это как-то притихло, и вот начавшее падать знамя непосредственного впрыска подхватил концерн VAG, да так, что по этой узкой тропинке между экономией на топливе и экономией на стоимости компонентов двигателя ломанусь и многие другие автопроизводители.
Для чего все это затевалось
Как бы ни кипел и бушевал внутренний инженер внутри любого сотрудника автомобильной компании, разработка большинства тех систем, что мы видим в современных автомобилях, вызвана была отнюдь не желанием сделать самый высокотехнологичный продукт. Нет, как правило, толчком всех инноваций в системах, управляющих формированием смеси, служат экологические нормы. Широким росчерком пера регулирующие органы вводят новые нормы. После этого (а как правило, несколько раньше) автопроизводители внедряют новые системы, позволяющие этим нормам удовлетворять.
Нам сложно сейчас судить о том, какая мотивация была у фирмы Mitsubishi, но исходя из общих тенденций – как минимум, очень схожая.
Главной особенностью (“киллер-фичей”, если задействовать сленг из другой профессиональной области) технологии GDI позиционировалась возможность работы на сверхбедных смесях. Здесь сразу надо сделать отступление и рассмотреть обычный режим работы двигателя.
На такте впуска поршень в цилиндре идет вниз, открывается впускной клапан, а форсунка “брызгает” топливом. Порцию топлива вместе с воздухом засасывает в цилиндр создаваемым разрежением. Попутно из-за турбулентности и тому подобных эффектов топливо перемешивается с воздухом, и продолжает это делать на такте сжатия, когда впускной клапан закрыт, а цилиндр идет вверх. Таким образом, к моменту достижения верхней мертвой точки в цилиндре оказывается сжатая равномерная смесь. Причем количество топлива, впрыснутое форсункой, рассчитывается так, чтобы его соотношение к воздуху составляло 1:14,7 (или немного беднее/богаче в зависимости от требуемого режима работы двигателя) – такая смесь называется стехиометрической, и горит лучше всего.
Гомогенное смесеобразование
Здесь все немного проще, впрыск топлива происходит практически одновременно с впуском воздуха. Все это делается на такте впуска, то есть когда впускной клапан открыт и поршень идет вниз. Пока поршень сделает путь вниз и обратно вверх, смесь воздуха и бензина успеет перемешаться.
Так как топливо все-таки впрыскивается под высоким давлением, то улучшается смесеобразование, а это позволяет использовать бОльшее количество воздуха. Поэтому для таких моторов доступно применение турбокомпрессоров и нагнетателей. Тут прочитайте про основные неисправности инжектора.
Особенности многоточечного механизма
Система впрыска используется почти всеми изготовителями авто.
Управление каждой форсункой производится в «личном» порядке. Время, когда это происходит, заложено программой управленческого блока. Если их активировать, происходит замена параллельным пуском.
Система по мере прогревания двигателя может демонстрировать должные качества работы на повышенных оборотах. Поломка датчика способствует иногда переходу устройства в полностью аварийный режим, его показания учитывает блок управления в процессе определения дозировки жидкости. Управление таким механизмом сегодня производится посредством специального компьютера, который называется электронным управленческим блоком. Для вычисления нужного момента открытия форсунок важно получать информационные данные от датчиков. Важный показатель – объем потоков, которые поступают в двигатель и измеряются датчиком.
В процессе вычисления подачи определенного количества топлива, которое необходимо для бесперебойной работы агрегата, компьютер анализирует другую информацию – это температурные и влажностные режимы, набор прочих параметров.
Достоинства и недостатки
Здесь, как и в любой системе есть свои достоинства и недостатки.
Плюсы инжекторов (если сравнивать с карбюратором):
- снижение потребления топлива в 2 раза;
- увеличение мощности;
- упрощенный (автоматизированный) запуск;
- легкое управление;
- снижение выброса токсинов в несколько раз;
- самонастройка, упрощающая техобслуживание;
- ремонт сводится к замене деталей;
- снижение высоты капота за счет размещения элементов инжекции по бокам мотора;
- независимость от давления атмосферы, положения авто (работа карбюраторов нарушается при кренах).
Минусы инжекторных систем:
- сравнительно высокая цена производства;
- высокие требования к качеству бензина;
- необходимость в специально оборудовании для диагностики;
- зависимость от электроэнергии;
- повышение вероятности пожара при ДТП из-за подачи бензина под давлением.
Последний недостаток частично компенсируется установкой контроллера, отключающего подачу при ударе.
Несколько разновидностей систем впрыска позволило укомплектовать ими большинство легковых автомобилей, выпущенных позже восьмидесятых. Управление механическое или электронное, топливо может подаваться непрерывно или импульсами.
Независимо от строения и принципа работы системы впрыска топлива, она дольше прослужит без ремонта, если отказаться от манипуляций с питанием, не отключать без необходимости массу, не осуществлять запуск при помощи буксировки. Инжекторные системы не переносят влагу, если вода проникает в них зимой, велика вероятность выхода из строя форсунок. Топливо должно быть чистое, особое внимание следует уделить состоянию фильтра, установленного перед насосом. При наличии в топливе примесей насос и система управления очень скоро выходят из строя.