Способы диагностики кислородного датчика
Специалисты советуют проверять корректность работы лямбда-зонда каждые 10000 км пробега, даже если проблем в работе устройства не наблюдается.
Диагностику начинают с проверки надёжности соединения клеммы с датчиком и на наличие механических повреждений. Далее выкручивают лямбда-зонд из коллектора и осматривают защитный кожух. Небольшие отложения очищают.
Если в ходе визуального осмотра на защитной трубке датчика кислорода были выявлены следы сажи, сильные белые, серые или блестящие отложения, то лямбда-зонд следует заменить
Как проверить лямбда-зонд мультиметром (тестером)
Проверка датчика на работоспособность проводится по следующим параметрам:
- Напряжение в нагревательной цепи;
- «Опорное» напряжение;
- Состояние нагревателя;
- Сигнал датчика.
Схема подключения к лямбда-зонду в зависимости от его типа
Наличие напряжения в цепи подогрева определяют мультиметром или вольтметром в следующей последовательности:
- Не снимая разъём с датчика, включают зажигание.
- Щупы присоединяют к цепи подогрева.
- Показания на приборе должны совпадать с напряжением на аккумуляторе — 12В.
«+» идёт на датчик от аккумулятора через предохранитель. При его отсутствии прозванивают эту цепь.
«—» поступает от блока управления. Если он не обнаружен, проверяют клеммы цепи «лямбда-зонд — ЭБУ».
Замеры опорного напряжения проводятся теми же аппаратами. Последовательность действий:
- Включают зажигание.
- Замеряют напряжение между сигнальным проводом и массой.
- Прибор должен показать 0,45 В.
Для проверки нагревателя мультиметр выставляют в режим омметра. Этапы диагностики:
- Снимают разъём с устройства.
- Замеряют сопротивление между контактами нагревателя.
- Показания на разных кислородниках различные, но не должны выходить за пределы 2-10 Ом.
Вольтметр или мультиметр используются для проверки сигнала датчика. Для этого:
- Заводят двигатель.
- Прогревают его до рабочей температуры.
- Щупы прибора соединяют с сигнальным проводом и проводом массы.
- Обороты мотора увеличивают до 3000 об/мин.
- Следят за замерами напряжения. Должны наблюдаться скачки в диапазоне от 0,1 В до 0,9 В.
Если хотя бы при одной из проверок показатели разнятся от нормы, датчик неисправен и нуждается в замене.
Видео: проверка лямбда-зонда тестером
Проверка осциллографом
Главным преимуществом данной диагностики лямбда-зонда перед проверкой вольтметром и мультиметром является фиксация времени между однотипными изменениями выходного напряжения. Оно не должно превышать 120 мс.
Очерёдность действий:
- Щуп прибора подключают к сигнальному проводу.
- Мотор прогревают до рабочей температуры.
- Обороты двигателя повышают до 2000-2600 об/мин.
- По показаниям осциллографа определяют работоспособность кислородного датчика.
Диагностика осциллографом даёт наиболее полную картину работы лямбда-зонда
Превышение временного показателя или пересечение пределов напряжения нижнего 0,1 В и верхнего 0,9 В говорит о неисправном кислородном датчике.
Видео: диагностика датчика кислорода осциллографом
Другие способы проверки
Если в автомобиле есть бортовая система, то по сигналу «CHECK ENGINE», выдающему определённую ошибку, можно диагностировать состояние лямбда-зонда.
Перечень ошибок лямбда-зонда
Чтобы лямбда-зонд работал долго и эффективно, необходимо заправлять автомобиль только качественным топливом. Плановая и своевременная диагностика датчика кислорода поможет вовремя обнаружить его неисправность. Эта мера способна продлить срок эксплуатации не только самого датчика, но и катализатора.
Главная → Устройство → Двигатель →
Диагностика двигателя по показаниям кислородных датчиков
Прежде чем поговорить об устройстве, работе и диагностике лямбда- зонда, обратимся к некоторым особенностям работы топливной системы. Нам поможет в этом эксперт журнала, Федор Александрович Рязанов, диагност с большим стажем работы, руководитель курсов обучения диагностов в . Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему. Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля. В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе. На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, — адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду. Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее. Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива. Таким образом, понятно, что со всех аспектов только стехиометрия топливной смеси (пропорция 14,7/1) является самым оптимальным режимом работы двигателя. И, конечно же, автомобиль, который только-только сошел с конвейера, обычно, укладывается во все рамки этого критерия. Но и «заводская» настройка может отличаться от идеала. Более того, в процессе эксплуатации автомобиля неизбежно наступает износ некоторых компонентов, датчики, отвечающие за настройку топливной системы, могут терять точность настроек. В итоге состав топливной смеси все больше уходит от идеальных показателей. В этом случае как раз и необходим лямбда- зонд, он фиксирует количество кислорода в выхлопе автомобиля. И если в выхлопе окажется большое количество кислорода, это «сигнализирует» о бедной топливной смеси и, наоборот, если в выхлопе нет кислорода, это указывает на то, что смесь стала богатой. А мы уже выяснили, что и в том, и в другом случае уменьшается мощность двигателя, растет расход топлива, снижается экологичность выхлопа. Задача лямбда-зонда как раз и заключается в том, чтобы скорректировать эти отклонения. Возьмем в качестве примера такую ситуацию: в топливной системе засорились форсунки, их производительность снизилась, смесь стала обедненной. Лямба-зонд фиксирует этот факт, а блок управления топливной системой реагирует на эту информацию и «доливает» немного топлива в цилиндры. Так происходит корректировка возникающих отклонений с учетом показаний этого датчика. Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси. Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация. Вернемся к нашим форсункам. При загрязненных форсунках нарушается эффективность распыления бензина, топливо распыляется крупными каплями, испаряются они с трудом. И система топливоподачи рассчитывает тот объем топлива, который необходим для достижения состояния стехиометрии, для этого фиксируются показания датчика расхода воздуха. Однако если бензин в системе выпрыскивается крупными каплями, его пары полностью не смешиваются с воздухом, часть паров сгорает, а часть капель бензина попросту вылетает в выхлопную трубу. Лямбда-зонд трактует такую ситуацию как бедную смесь, а датчик топливной системы, который «не видит» отдельные капли бензина, добавляет топлива, чтобы привести смесь в состояние стехиометрии. Но в этом случае, резко повышается расход топлива. Поэтому для работы лямбда-зонда важен не фактор того, как система справляется с выводом смеси на стехиометрию, а фактор того, какой «ценой» ей удается это сделать. Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород. И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется — состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда. Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии. Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки. На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.
Если переключение длится долго, как в случае нашей осциллограммы (см. осциллограмму, Рис. 2) – 350 мс, да к тому же такая ситуация повторяется многократно, блок управления выдаст ошибку: «замедленная реакция лямбда-зонда».
Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления. Таким образом, для диагностики по лямбда-зонду необходимо изучить фазы переключения датчика. И если на осциллограмме появится хотя бы одно переключение с низкого показания на высокое (максимальное – 1В, минимальное – 0В), это значит, что лямбда-зонд работает исправно. Исправный датчик делает примерно одно переключение в секунду. Напомним, что в алгоритме работы блока управления о бедной смеси «сигналят» показания лямбда-зонда ниже 0,4В, а о богатой – выше 0,6 В. Поэтому оценить состояние топливной системы автомобиля можно и по работе датчика. В нашем случае (см. осциллограмму, Рис. 3) блоку управления удалось скомпенсировать все дефекты и вывести стехиометрию.
Вернемся к примеру с загрязненными форсунками. При обедненной смеси показания лямбда-зонда падают ниже 0,4В. Блок управления добавляет топлива до того момента, когда смесь станет богатой. Отметим, что в этом случае блок управления «самостоятельно» отклонился от установленных заводом-изготовителем в его карте параметров. Величину отклонения он записывает в своей памяти как топливную коррекцию (fuel trime). Предельно допустимые показатели топливной коррекции для большинства современных автомобилей составляют ±20-25%. Коррекция в «плюс» означает, что блоку пришлось добавлять топлива, коррекция в «минус» — наоборот, убавлять. Допустим, неисправность носит долговременный характер: блок управления уже дошел до предела топливной коррекции, загорается код ошибки — «Превышение пределов топливной коррекции». Стерев код, исправить такой дефект нельзя, а наличие этой неисправности повлечет за собой перерасход топлива. Стоит отметить, что уже на 15% топливной коррекции обнаруживаются проблемы: автомобиль почти не едет, но расходует большое количество топлива. То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе. И немного об особенностях строения лямбда-зонда. Такой датчик имеет циркониевую колбочку, которая одной стороной помещена в выхлопные газы. Цирконий уникальный материал, так как сквозь него может проходить кислород. Ион кислорода, «прилипая» к атомам циркония, движется по ним, при этом на циркониевом колпачке возникает напряжение. И если все идет в штатном порядке, то диффузия ионов кислорода осуществляется равномерно, и напряжение на обкладках колбочки составляет 1В. Если в выхлопе появляется кислород, диффузия невозможна, и напряжение в этом случае равно 0В. Вместо циркония в лямбда-зондах может использоваться окись титана. Отличие циркониевого лямбда-зонда от титанового заключается в том, что первый вырабатывает напряжение, а другой – меняет свое сопротивление (в переделах от 0 до 5В), и ему нужна схема, которая переводит меняющееся сопротивление в напряжение. Слой платины на колбочке поверх циркония позволяет снять с него напряжение, играет роль катализатора, дожигает бензин и несгоревший кислород. Все ухудшается при использовании некачественного топлива, а также топливных присадок, которые в прямом смысле закупоривают слой платины и циркония, и зонд выходит из строя. Однако в этом случае, если у зонда нет физических повреждений, обычная промывка вернет его в рабочее состояние. «Современный бич» – это добавки антидетонационных присадок в топливо. До недавнего времени в качестве присадки использовался ферроцент — опасное вещество, которое мы окрестили «красная смерть» за ее красный оттенок, а также за способность быстро выводить из строя свечи, лямбда-зонды и катализатор», — отмечает Федор Александрович. Зонд может «замерзнуть» в высоком или в низком положении, то есть или в фазе богатой, или в фазе бедной смеси. И в этом случае датчик достигнет пределов топливной коррекции и прекратит попытки выравнивать состав смеси до стехиометрии. Диагностику состояния системы топливоподачи начинаем с подключения сканера к автомобилю. Отсутствие кода «Превышение пределов топливной коррекции» еще не говорит об отсутствии дефектов в системе топливоподачи. Необходимо в потоке данных (Data Stream) убедиться в наличии колебаний лямбда-зонда (стехиометрия достигнута), а также по величине топливной коррекции оценить, какой ценой она достигнута. Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен. Рассмотренные выше лямбда-зонды носят название «скачковые». Т.е. они указывают на то, есть кислород в выхлопе или нет. Но все более ужесточающиеся требования к экологии заставили производителей разработать датчики, которые способны не только работать по принципу «Да-Нет», но и определять процент кисло- рода в выхлопе. Такие датчики получили название «широкополосные датчики кислорода». Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях. МНЕНИЕ Максим Пастухов, технический специалист : «Практика показывает, что основными причинами выхода из строя лямбда зондов являются: 1. Загрязнение лямбда-зонда продуктами сгорания топлива. Фактически это присадки, которые используются для повышения октанового числа бензина, устранения детонации или для других целей. Также на это влияет степень очистки топлива. Присадки, сера и парафины «закупоривают» проводящий слой лямбда-зонда, и он «слепнет». Блок управления переводит двигатель в аварийный режим, и мы видим на приборной панели значок «Проверьте двигатель». Кстати, от вышеописанных вещей страдают также свечи зажигания, клапаны, катализатор и др. компоненты двигателя. Имеет смысл комплексно подходить к ремонту, если лямбда-зонд вышел из строя. 2. Агрессивная смесь, которой посыпают наши дороги. Она разъедает изоляцию проводов и сами провода. Мы для защиты от этого используем двойную изоляцию проводов, а также прячем место сварки проводов с датчиком внутрь лямбда-зонда». 09.04.2014 г.
Коэффициент избытка воздуха λ
Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.
В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.
Зависимость мощности (P) и расхода топлива (Q) от коэффициента избытка воздуха
Коэффициент избытка воздуха (λ)
– это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.
В зависимости от значения λ различают три вида топливовоздушной смеси:
- λ = 1 – стехиометрическая смесь;
- λ < 1 – “богатая” смесь (избыток – топливо; недостаток – воздух);
- λ > 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).
Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа происходит при стехиометрическом составе топливовоздушной смеси.
Какие бывают датчики?
Датчики выпускаются в одно-, двух-, трех- и четырехпроводном исполнении. Два первых варианта исполнения сейчас встречаются редко. Их недостатком является необходимость установки датчика в непосредственной близости от блока цилиндров, потому что они включались в работу при температуре выше 300°С. Это вызывало определенные задержки в обратной связи блока управления и датчика. Полностью всех этих недостатков лишены последние четырехпроводные модели.
Датчики выпускаются с подогревом и без него
. Датчики с подогревом оборудованы нагревающим элементом. Такой вариант исполнения имеет более длительные сроки эксплуатации.
Таким образом, имеющий неисправности или неработающий датчик приводит к потере мощности двигателя, сбоям на холостом ходу, увеличению расхода топлива, возникновению нагара по причине неполного сгорания смеси и повышенному износу цилиндров, увеличению выброса вредных веществ. Вот на что влияет лямбда зонд, и это еще не весь перечень последствий его неправильной работы. Последствий отнюдь не безобидных.
Рабочий цикл широкополосного датчика
Рабочую зону широкополосного лямбда зонда принято условно делить на 4 части. Это удобно для понимания принципа работы узла, во время диагностики, когда на приборной панели выходит ошибка системы.
- Камера ионого электролизного насоса — А.
- Чувствительный элемент или элемент Нернста — В.
- Электроцепь — С.
- ЭБУ — Д.
Отработанные газы, проходя по патрубку системы проникают в диффузионную щель, где происходит процесс дожигания. После дожига в камере образуется либо избыток, либо нехватка кислорода. Время каталитического сгорания твердых частиц в камере занимает 0.01 сек., но поскольку процесс дожига происходит только при высоком нагреве газа (от 200–300 градусов по Цельсию), камера нагревается через элемент нагревателя.
После догара топливного выхлопа в блоке, чувствительный элемент Нернста проводит сравнение, полученный состав воздуха с эталонным и передает информацию на ЭБУ мотора в одном из трех вариантов:
- недостаток кислорода (лямбда «минус»), смесь обедненная;
- переизбыток (лямбда «плюс»), смесь обогащенная;
- стехиометрия (лямбда =1) — уравновешенный параметр.
На основе показателей ЭБУ посылает импульс на ионный насосный блок. В зависимости от первичных данных блок управления передает одну из трех команд.
- При переизбытке кислорода формируется положительный ток, смесь обедненная, необходимо провести лишний кислород в выхлопной патрубок.
- Если смесь обогащенная, необходимо закачать кислород из коллектора выхлопной системы в камеру и сформировать отрицательный ток.
- При стехиометрии ЭБУ не дает сигнал.
Во время формирования положительного или отрицательного тока в блоке ионного насоса, формируется показатель качественного состава выхлопной смеси. ЭБУ считывает параметр тока на сторонах насоса и формирует сигналы на корректировку подачи топлива в систему впрыска.
После внедрения широкополостных датчиков в систему выходного коллектора значительно упростился процесс диагностики и отпала необходимость использовать газоанализаторы. Но не все так однозначно в работе современных датчиков.
Причины неисправности
Почему данный механизм может выходить из строя? Первая причина – это естественный износ. Если пробег автомобиля составил более 50 тысяч километров, ресурс механизма может подойти к концу. Но также датчик ломается по другим причинам:
- При обрыве проводов, что идут на датчик. В таком случае сигнал попросту не поступит на ЭБУ.
- При механическом повреждении. Многие датчики устанавливаются в районе днища. Если автомобиль проехал через глубокое препятствие, возможно повреждение измерительного элемента. При малейшей деформации разрушается гальванический элемент широкополосного датчика кислорода.
- При перегреве датчика. Это может произойти из-за неполадок в топливной системе автомобиля. Обычно это некорректный угол зажигания либо неправильный тюнинг двигателя (например, не та прошивка ЭБУ при чип-тюнинге).
- При загрязнении чувствительного элемента. Если закоксовывается верхний слой с платиновым покрытием, ионы не будут улавливаться широкополосным датчиком. Что это может быть? Обычно загрязнения происходят из-за попадания масла в камеру сгорания. данная копоть затем обволакивает стенки выпускного коллектора, а также наконечника датчика. Еще загрязнения могут происходить из-за использования некачественного бензина, который содержит много свинца.
- При разгерметизации корпуса. Такое бывает редко, но данную неисправность не следует исключать.
- При попадании антифриза в цилиндры двигателя. это происходит из-за пробоя прокладки головки блока. В результате газы приобретают характерный белый цвет. Помимо этого, меняется и концентрация кислорода в выхлопе. Простыми словами, датчик начинает «сходить с ума». ЭБУ готовит неправильную смесь.
Как это работает?
Алгоритм действия данного элемента основывается на поддержке определенного напряжения. Оно составляет 0,45 В. Это стабильный показатель между двумя электродами датчика.
При снижении концентрации О2, напряжение между керамическим элементом возрастает. это свидетельствует о наличии обогащенной смеси. Данный сигнал моментально поступает в электронный блок управления. Последний на основаниях этих сигналов создает ток определенной силы на исполнительных устройствах (в том числе на форсунке). Та, в свою очередь, впрыскивает больше (или меньше, в зависимости от показаний) бензина в камеру. Если смесь бедная, датчик сигнализирует об этом ЭБУ таким же образом.
Конструктивные параметры широкополостного лямбда зонда
Место установки датчика на патрубке выходного коллектора перед блоком каталитического нейтрализатора. Для более четкого контроля за составом выхлопного газа и работой катализатора, после блока нейтрализатора может устанавливается второй кислородник. Конструкция широкополостного элемента.
- Камера электролизного (ионного) насоса.
- Опорные электроды (платиновое покрытие).
- Нагревательная пластина.
- Эталонный проход.
- Керамический блок (ZrO2).
- Диффузионная щель.
- Измерительная (опорная) камера.
- Платиновые электроды измерительной камеры.
- Электроды ионной электролизной камеры (насоса).
Широкополостные конструкции выдают значение лямбда (идеальная или стехиометрическая ТВС) в виде гиперболы по мере увеличения амперности. Циркониевые и титановые измерители лишены возможности точно отслеживать изменение параметров топливной смеси из-за особенности конструкции, единственный показатель, который доступен таким датчикам передавать на ЭБУ сигнал о состоянии ТВС в значениях: «Обогащенная», «Обедненная».
Про эксплуатацию датчика
Лямбда зонд – неразборная конструкция и рассчитана на пробег до восьмидесяти тысяч километров. Правда, этот показатель может значительно уменьшиться при нарушении правил эксплуатации. Среди них стоит отметить:
- использование этилированного бензина или других видов топлива, не предусмотренных изготовителем;
- перегрев датчика;
- многократные неудачные запуски двигателя;
- попадание на корпус датчика эксплуатационных автомобильных жидкостей или моющих средств;
- замыкание на «массу», а также плохой контакт выходной цепи.
Могут быть и другие причины, вызывающие отказ датчика, но и уже приведенных достаточно для понимания, что это хрупкое изделие и требует в процессе работы бережного отношения. Полностью проверить датчик с необходимой степенью достоверности можно, воспользовавшись осциллографом. Однако результаты работы датчика видны невооруженным взглядом по ряду признаков:
- увеличение расхода топлива;
- увеличение содержания окиси углерода в составе ВГ;
- ухудшение динамики машины;
- неустойчивая работа мотора.
Причин отказов датчика может быть несколько, но независимо от них ремонт для него не предусмотрен, только замена.
Лямбда зонд в современных автомобилях контролирует количество кислорода в составе ВГ. Он также осуществляет выдачу данных в контроллер управления двигателем с целью изменения состава ТВС для полного сгорания смеси и обеспечения необходимых условий работы нейтрализатора.
Что еще стоит почитать
Зачем нужен датчик детонации
Обеднённая топливная смесь
Принцип работы роботизированной коробки передач
Состав бензина
Признаки неисправности датчика лямдазон
Повреждение лямдазона – довольно частая неисправность. Эта поломка может быть связана как с конструкцией датчика, так и с условиями, в которых этот элемент работает. В теории зонд должен выдержать 150 тысяч километров пробега и даже больше, но в реальности часто бывает по-другому. Ведь лямдазон находится в выхлопной системе, где постоянно подвергается воздействию высоких температур и химических веществ.
Качество используемого топлива также оказывает большое влияние на срок службы датчика. Всего одна заправка этилированным или некачественным топливом может привести к необратимому повреждению лямдазонда. Несгоревшая примесь откладывается на датчике и блокирует его работу. Поэтому машину следует заправлять только качественным высокооктановым топливом на проверенных заправочных станциях.
С другой стороны, корпус датчика выходит за пределы системы выпуска отработавших газов, где подвергается постоянному контакту с водой и грязью. Бывает, что по причине внезапного скачка или рывка на машине, к примеру, из-за наезда на препятствие, происходит натяжение проводов датчика, которые идут к контроллеру двигателя. В результате кабель может просто износиться или даже сломаться, что также потребует от вас замену датчика. Поэтому нет ничего удивительного в том, что датчик, как и большинство механических устройств в автомобиле, со временем изнашивается и неожиданно выходит из строя.
В свою очередь наиболее распространенными признаками неисправности лямдазона являются:
- Резкое увеличение расхода топлива, вплоть до 50%;
- Потеря мощности двигателя;
- Самопроизвольное изменение частоты вращения двигателя;
- Нестабильная работа мотора, периодические хлопки и толчки;
- Долго реагирует на нажатие педали газа;
- Черный дым из выхлопной трубы;
- Повышенный выброс оксидов углерода и углеводородов выхлопных газов;
- Загорается индикатор Check Engine;
- После удаления кода неисправности из ЭБУ двигателя ошибка возвращается снова.
Помимо вышеперечисленных признаков неисправности лямдазона, на неправильную работу зонда, впрочем, как и самого двигателя, могут указывать цветные отложения на его поверхности, например:
- Черный и жирный налет на зонде говорит о чрезмерном потреблении двигателем масла.
- Зеленое и твердое отложение – в камеру сгорания попадает охлаждающая жидкость.
- Темно-коричневый цвет указывает на слишком богатую топливно-воздушную смесь.
- Красноватый или беловатый оттенок говорит о применении в используемом топливе нежелательных топливных присадок.
Если ничего не делать
Первым делом будет страдать сам автомобилист, так как вырастет расход топлива, а выхлопные газы будут токсично пахнуть с резкими оттенками из трубы. В случае с современными автомобилями со множеством электроники, которая знает, как проверить исправность датчика кислорода, активируется блокировка. В такой ситуации любое движение на автомобиле станет невозможным. Но самый худший вариант – это разгерметизация. Машина вообще не поедет либо с трудом заведется. Это чревато полным выходом двигателя из строя. В случае разгерметизации все газы вместо выхлопной трубы попадут в канал забора воздуха. Когда будет выполняться торможение двигателем, зонд зафиксирует токсичность и будет подавать отрицательные сигналы. Это полностью выведет из строя систему впрыска. Главный признак разгерметизации – потеря мощности двигателя. Это можно ощущать во время движения на скорости. Также из-под капота будут слышны стук и хлопки, запах. Раньше автомобилистам нужно было знать, как настраивать карбюратор. Сейчас ничего не изменилось – необходимо помнить, как проверить датчик кислорода (ВАЗ-2112 не исключение).
Назначение датчиков кислорода
Расположение кислородных датчиков в системе выхлопа
Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.
Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем “понимает”, на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.
Датчик кислорода:назначение,виды,устройство,фото,принцип работы
Распространённые причины неисправностей лямбда зонда и способы их устранения
Датчики содержания кислорода в топливовоздушной смеси со временем выходят из строя, что можно определить по нестабильной работе двигателя и увеличенному расходу горючего. Причины неисправности лямбда — это заправка топлива низкого качества, неполадки системы приготовления и подачи горючего, попадание на датчик спецжидкостей. Неполадки проявляется следующими признаками:
- резкий рост оборотов до максимальных значений и мгновенное отключение мотора;
- ухудшение качества подаваемой в цилиндры смеси, снижение полноты сгорания;
- колебания оборотов холостого хода;
- значительное снижение мощности при увеличении оборотов;
- сбои в работе электронных блоков из-за задержек в подаче сигналов с датчика;
- движение автомобиля рывками;
- появление в двигательном отсеке звуков, которые нехарактерны при нормальной работе мотора;
- поздний впрыск при нажатии педали.
Для восстановления работоспособности электроники и системы впрыска понадобится замена или правильная очистка лямбда зонда. При очистке нужно снять керамический наконечник и удалить загрязнения при помощи химических средств.
Электронная проверка лямбда зонда
Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.
Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.
Замена лямбда зонда
В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.
Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.
Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.
Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.
Вопрос — ответ
В: Чем отличаются специальные и универсальные датчики? O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.
B: Что произойдет, если выйдет из строя датчик кислорода? O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.
B: Как часто необходимо менять датчик кислорода? O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.
Ассортимент кислородных датчиков
• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка. • Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные. • Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора). • Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.
В DENSO решили проблему качества топлива!
Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации.
При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.
В: Почему на некоторых автомобилях устанавливаются два кислородных датчика? O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.
В: Почему состав топливовоздушной смеси нужно постоянно регулировать? O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь).
ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.
Устройство и принцип работы современного гидротрансформатора:описание,фото
Подвеска МакФерсон (McPherson): устройство,описание,назначение,фото
Датчик детонации:описание,виды,устройство,принцип работы
Вариатор:описание,фото,принцип работы,устройство,виды
Диагностика зонда мультиметром
Если визуально датчик не имеет следов неисправности, нет отложений, проверяется работоспособность цепи. В широкополостных датчиках Bosch, которые чаще других устанавливаются на авто присутствует шесть проводов подключения:
- Красный — сигнальный плюс;
- Желтый — опорный плюс;
- Черный — опорный минус;
- Белый — нагреватель минус;
- Серый — нагреватель плюс;
- Зеленый — сигнальный минус.
Для проверки работоспособности определенный провод будет подключаться на щуп мультиметра. Проверка целостности электроцепи узла делится на четыре этапа.
- Диагностика напряжения в нагревательном элементе.
- Напряжения в опорном блоке зонда (опорное напряжение).
- Сопротивление нагревательного элемента (проверка состояния).
- Сигнал.
Для проверки напряжения в нагревательном элементе, включают зажигание, зонд остается в разъеме. Щупы мультиметра присоединяются к проводам подогрева (белый, серый). Если цепь рабочая, цифры напряжения на экране тестера совпадут с напряжением бортовой сети — 12 В.
Напряжение в проводке опорного блока проверяется аналогично. Щупы устанавливаются на сигнальный провод и массу (желтый, черный), рабочая проводка выдаст на экран тестера показание 0.45 В.
Широкополостные конструкции зондов могут работать только после нагрева. Работоспособность нагревательной части датчика проверяют по сопротивлению элемента. Датчик снимают с разъема, проверяют сопротивление между контактами нагревателя. Для каждого зонда характерны индивидуальные параметры сопротивления, но в любом случае они находятся в границах 2–10 Ом.
Чем больше концентрация кислорода в отработанных газах, тем меньше проводимость и меньше э.д.с. Напряжение на сигнальном выводе датчика падает. При стехиометрическом составе смеси среднее значение напряжения на сигнальном электроде примерно 0,5 В. Поэтому многие производители поддерживают такое напряжение из ЭБУ двигателем как опорное.
Кислородный датчик начинает работать при достижении им температуры 300 — 400 гр.
До прогрева и начала работы датчика управление работой двигателя производится по разомкнутой схеме управления, т.е. без обратной связи — по заложенному в ЭБУ алгоритму. Некоторые производители не используют опорное напряжение, а поддерживают на входе в ЭБУ нулевое напряжение. После прогрева двигателя начинают меняться показания кислородного датчика и управление двигателем переходит в режим замкнутого контура управления с обратной связью. Если после прогрева и работе двигателя на различных режимах значения на сигнальном выводе датчика не изменились, система самодиагностики ЭБУ двигателем должна зафиксировать неисправность кислородного датчика.
Для более быстрого прогрева кислородного датчика некоторые производители располагают его непосредственно на выпускном коллекторе, датчик быстрее входит в рабочий температурный режим, но при этом, в дальнейшем используется при повышенных температурах и быстрее выходит из строя. Уменьшению времени прогрева способствует нагревательный элемент, встроенный в датчик. Сопротивление нагревательного элемента 3 — 15 Ом. Напряжение на обмотке прогрева 12 В. За 10 секунд на режиме холостого хода исправный датчик совершает 4 — 6 переключений. На повышенных оборотах вращения коленвала двигателя, число переключений возрастает при правильной регулировке двигателя. Внешний вид кислородного датчика представлен на рис. 3. Осциллограмма исправного кислородного датчика — на рис. 4.
Титановый (ТIO2) кислородный датчик работает на другом принципе — меняет проводимость в зависимости от содержания кислорода в отработанных газах. Титановый датчик меняет сопротивление от 1 Ком до 100 Ком при изменении содержания кислорода в отработанных газах. «Бедная» смесь: высокое сопротивление и низкое напряжение. «Богатая» смесь: низкое сопротивление и высокое напряжение.
Опорное напряжение обычно 1 В. Изменение напряжения на сигнальном проводе от 0,6 до 4,8 В. Сопротивление нагревательного элемента от 7 до 40 Ом.
На рис. 5 приведена характеристика переключения сигнала в зависимости от состава смеси. На рис. 6 приведена осциллограмма на режиме XX исправного датчика.
При богатой смеси сопротивление титанового элемента уменьшается, увеличивается ток и возрастает напряжение на сигнальном проводе.
Применяются на двигателях фирм НИССАН, ОПЕЛЬ, ДЖИП. Для поддержания высокой температурной зависимости и стабильности в работе в датчик встроен подогреватель.
Датчик сверхобеднённой смеси (LAF) при меняются для анализа состава смеси в диапазоне от 12:1 до 23:1, т.к. обычные датчики в этом диапазоне работают не точно. Кислородный датчик из ZrO2 работает за счёт перемещения ионов кислорода в твёрдом электролите при различном со держании кислорода в отработанных газах двигателя и в воздухе. Возникает разность потенциалов, которую и анализирует ЭБУ двигателем. LAF датчик состоит из двух обычных циркониевых дат чиков, но общая конструкция и принцип работы отличается и состоит в следующем.
Внешняя сторона чувствительного элемента датчика 1 находится в выпускном коллекторе и соприкасается с отработанными газами (вывод А). Внутренняя сторона чувствительного элемента датчика 1 располагается в изолированной диффузионной камере (вывод В). Контакт внешней сто роны датчика 1 подключён к ЭБУ. На нём генерируется напряжение, отражающее разницу концентраций кислорода в отработанных газах и в диффузионной камере. Диффузионная камера не со прикасается с атмосферой.
Внутренняя часть чувствительного элемента датчика 2 находится в диффузионной камере (вывод С), а внешняя часть — в атмосфере (вы вод Это насосная часть. Движение ионов кислорода процесс обратимый, т.е. перемещение ионов кислорода между электродами создаёт разность потенциалов, а «приложение» напряжения вызывает перемещение ионов кислорода. На чувствительные элементы — внутренняя часть датчика 1 и внутренняя часть датчика 2 подаётся эталонное напряжение 2,7 В относительно массы. Создавая напряжение на управляющем элементе внешней стороны датчика 2 (D) ЭБУ может создавать условия для движения ионов кислорода в диффузионную камеру или из неё. Изменения напряжения производятся таким образом, чтобы поддерживать выходное напряжение на выводе А равное 0,45 В, т.е. на пряжение на выводе D может быть положительным («бедная» смесь) или отрицательным («богатая» смесь). Диапазон изменения напряжения примерно 1,5 В.
Датчик обеднённой смеси (LAF) применяются для анализа состава смеси в диапазоне до 23:1. Обычный кислородный датчик не может точно определить на сколько смесь «бедна» (ТОЙОТА, ХОНДА). Устройство датчика обеднённой смеси : к циркониевому чувствительному элементу подаётся постоянное напряжение, вызывающее протекание через него электрического тока. Величина протекающего тока будет зависеть от разницы концентраций кислорода на электродах. Для создания постоянного тока в датчике используется дополнительный диффузионный слой. Если смесь «богатая», то в датчике ток не генерируется. Если «бед- величина генерируемого тока увеличивается. Для определения степени обеднения смеси ЭБУ изменяет напряжение на датчике и «анализирует» приращение тока, т.е. по мере «обеднения» смеси — ток увеличивается.
При «обогащённой» смеси датчик работает как обычный циркониевый датчик, т.е. генерирует напряжение более 0,5 В, а при «обеднённой» смеси работа ет как источник тока и для увеличения чувствительности датчика ЭБУ подаёт на него напряжение.
Широкополосный кислородный датчик (Wide Range Air/Fuel Sensor) применяются для анализа состава смеси в диапазоне до 23:1 (ТОЙОТА, ЛЕКСУС). Выходной сигнал датчика соответствует составу смеси во всём диапазоне её изменений (рис. 9).
При постоянно приложенном напряжении, ток меняется при изменении состава смеси. Рабочая температура такого датчика выше, поэтому применяются подогреватели высокой мощности с током подогрева до 6 А. Сопротивление подогревательного элемента 0,8 — 1,5 Ом. Применяется импульсный способ подогрева.
РАСПОЛОЖЕНИЕ:В выпускном коллекторе, перед или после нейтрализатора отработанных газов.
НЕИСПРАВНОСТИ: Кислородный датчик является сменным элементом и служит 80 — 150 тыс.
км, но может выйти из строя и за 100 км или служить 200 тыс.км. Боится ударов; применения в двигателе этилированного бензина; бензина с высоким содержанием антидетонаторов; попадания в выпускную систему повышенных концентраций несгоревших углеводородов: моторное масло, несгоревший бензин или различные присадки к топливу.
Неисправность циркониевого или титанового датчика может проявляться в следующем виде: долгий прогрев, при котором напряжение на сигнальном проводе не изменяется; после прогрева датчика напряжение на сигнальном проводе зависает в районе средних величин или медленно из меняется в небольших пределах.
МЕТОДИКА ПРОВЕРКИ: Датчики кисло рода могут быть однопроводными — в ЭБУ двигателем идёт сигнальный провод (обычно чёрный), масса-через металл выпускной системы; трёх проводными — обмотка прогрева (два белых прово да), сигнальный провод(обычно чёрный), масса через металл выпускной системы; четырёхпроводным — обмотка прогрева(два белых провода), сигнальный провод (обычно чёрный), масса(обыч но серый провод).
Нормально работающий датчик(при исправности всех систем двигателя и расположенный перед нейтрализатором) осуществляет от 3 до 5 явно выраженных «переключений» за 10 сек. При повышении оборотов двигателя — количество «переключений» возрастает.
Проверку на обеднение смеси можно провес ти, отключением разъема форсунки. Проверку на обогащение смеси можно провести, отключением вакуумного патрубка регулятора давления топлива или впрыском во впускной коллектор небольшого количества аэрозольного средства для быстрого старта двигателя, содержащего летучие эфирные соединения. При этом напряжение на сигнальном выводе должно измениться по тем правилам, которые приведены при описании принципов работы датчика кислорода данного типа. Дат чики кислорода, расположенные после нейтрали затора, предназначены для проверки эффективности работы самого нейтрализатора. Если сигналы кислородных датчиков до и после нейтрализатора практически совпадают, то нейтрализатор своих функций не выполняет. Сигнал кислородного дат чика после исправного нейтрализатора обычно представляет собой незначительные колебания в районе опорного напряжения.
РЕМОНТ: Ремонту не подлежит.
Разновидности лямбда-зондов
Современные машины оснащаются следующими датчиками:
- Циркониевые;
- Титановые;
- Широкополосные.
Циркониевый
Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).
Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)
Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.
Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.
Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.
Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода
Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.
По количеству проводов можно выделить несколько типов циркониевых устройств:
- В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
- Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
- Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.
Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики
Титановый
Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.
Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.
Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)
Широкополосный
Конструктивно отличается от предыдущих 2 камерами (ячейками):
- Измерительной;
- Насосной.
В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.
Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.
Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6
Что важно и необходимо знать при замене лямбда зонда
При установке нового лямбда зонда следует учитывать следующее:
- При снятии и установке датчика кислорода используйте только специальный инструмент, предназначенный для этой цели. Специнструмент для снятия датчиков есть в наборах, а бывает и отдельно съемник лямбда зондов. Использование его значительно упростит снятие, и установку датчика.
- Проверьте резьбу в выхлопной системе на наличие повреждений.
- Используйте только прилагаемую смазку или смазку, специально предназначенную для лямбда-датчиков.
- Избегайте контакта измерительного элемента зонда с водой, маслом, смазкой, чистящими средствами и средствами для удаления ржавчины.
- Соблюдайте соответствующие моменты затяжки
, указанные производителем лямбда-датчика или автомобиля. - При прокладке соединительного кабеля следите за тем, чтобы он не соприкасался с горячими или подвижными объектами и не проходил через острые края.
- Проложите кабель нового лямбда-датчика в соответствии с шаблоном первоначально установленного датчика, насколько это возможно.
- Не прокладывайте провода внатяжку. Убедитесь, что соединительный кабель имеет достаточный запас подвижности до сильной натяжки, чтобы он не оторвался от выхлопной системы при вибрации и движении.
- Не следует использовать какие-либо добавки на основе металлов или топливо, содержащее свинец.
- Никогда не используйте лямбда-датчик, который упал на землю или поврежден.
Принцип действия
В кислороде присутствуют отрицательно заряженные ионы. Они собираются на электродах из платины и при достижении нужной температуры датчика (где-то 400 градусов Цельсия) создается разность потенциалов (напряжение).
Если смесь слишком обеднена, то объем кислорода в газах будет высоким, и наоборот, если смесь обогащена, то кислорода будет мало.
В первом случае напряжение равно 0,2-0,3 Вольта, а во втором — 0,7-0,9 Вольта.
Система управления мотора поддерживает уровень напряжения около 0,4-0,6 Вольт, то есть уровень лямбда равен 1.0.
В процессе движения происходит изменение режимов работы мотора, что способствует корректировке параметра напряжения в обе стороны. При этом узкополосный датчик может улавливать лишь те параметры, которые выше нуля.
Лямбда-зонд, который установлен после катализатора, имеет такой же принцип действия.
После обработки газов катализатором, уровень кислорода остается неизменным. Это, в свою очередь, позволяет поддерживать оптимальную разницу потенциалов в пределах 0.4-0.6 Вольта.
Циркониевый лябда зонд
(Проверка и замена лямбда зонда на Kia Ceed)
Примечание: данная статья является общеинформационной и относится к любой марке автомобиля с циркониевым лямда зондом
Существует распространенное мнение, что лямбда-зонд является датчиком наличия кислорода в выхлопных газах. Это приводит к неправильному пониманию работы датчика и в некоторых случаях ведет к ошибкам при диагностике и в ремонте.
Существует распространенное мнение, что лямбда-зонд является датчиком наличия кислорода в выхлопных газах. Это приводит к неправильному пониманию работы датчика и в некоторых случаях ведет к ошибкам при диагностике и в ремонте.
Давайте рассмотрим работу системы управления двигателем подробнее и проведем несколько экспериментов для выяснения деталей работы датчика.
Для полного сгорания 1 кг бензина требуется приблизительно 14,7 кг воздуха. Такой состав смеси называется «стехиометрическим». Полное сгорание топлива сопровождается образованием углекислого газа (С02) и водяного пара (Н2O). Отношение стехиометрического состава смеси к реальному принято обозначать буквой — λ (Лямбда). Если λ< 1 (недостатоквоздуха)-богатая смесь. Если λ > 1 бедная смесь. В отработавших газах реального двигателя при сгорании стехиометрической смеси присутствует также незначительное количество токсических веществ (СО, ОН, NOx) и кислород (O2). Горение стехиометрической смеси обеспечивает наименьшее содержание токсичных веществ в отработанных газах, особенно при работе с катализатором, оптимальную экономичность и мощность двигателя. При наличии катализатора токсические вещества взаимодействуют с кислородом и преобразуются в нетоксичные (СO2, Н2O, N2).
Если в цилиндр подавать больше бензина чем требуется для полного сгорания поступившего воздуха, то смесь будет богатой (λ < 1). В выхлопных газах по мере обогащения смеси будет увеличиваться содержание угарного газа (СО), и уменьшаться СO2 и Н2O. При работе на богатой смеси в выхлопе почти нет кислорода O2. Температура горения низкая и оксиды азота практически не образуются. Небольшое обогащение смеси приводит к повышению мощности двигателя, но потери экономичности. Сильное обогащение приводит к потере и мощности и экономичности.
При работе двигателя на бедной смеси (λ > 1), когда бензина подается меньше чем нужно для полного сгорания поступившего воздуха, в выхлопных газах будет присутствовать значительное количество кислорода (O2). По мере обеднения смеси концентрация кислорода будет увеличиваться, а углекислого газа и водяного пара уменьшаться. В выхлопе почти не образуется угарного газа (СО). В зависимости от степени обеднения смеси выхлопные газы могут содержать токсичные NOx и СН. Небольшое обеднение позволяет повысить экономичность двигателя, но снижает мощность. Сильное обеднение приводит к потере и мощности и экономичности.
Датчик способный измерить состав смеси называется лямбда зонд. Наиболее распространенные циркониевые датчики, которых еще называют датчиком кислорода. При работе двигателя на бедной смеси, и при значительном содержании кислорода в отработавших газах сигнал датчика будет иметь низкий уровень — напряжение в пределах 0,05…0,1 В. А для богатой смеси соответственно высокий уровень сигнала — 0,9…1 В.
Вышесказанное есть общеизвестная информация, и относится к идеальному сгоранию гомогенной смеси. В реальном двигателе процессы могут иметь значительное отличие от идеальных условий. Например, если в одном из цилиндров будет неисправна свеча, и не будет происходить сгорание топлива, тогда топливовоздушная смесь из данного цилиндра будет попадать в выхлопную систему, а это кислород (O2) и топливо (СН). Не зависимо от того какая смесь сгорает в других цилиндрах двигателя, хоть богатая, хоть бедная, в выхлопных газах всегда будет значительное количество кислорода и топлива. Второй пример, когда не работает форсунка одного из цилиндров, и весь воздух с данного цилиндра попадает в выпускную систему. Для любого состава смеси в остальных цилиндрах в отработавших газах двигателя будет большое содержание кислорода.
Если считать, что циркониевый лямбда-зонд реагирует на кислород в выхлопных газах, то можно предположить что в случае неисправности одной свечи или одной форсунки многоцилиндрового бензинового двигателя наш датчик будет всегда выдавать низкий уровень сигнала даже при работе исправных цилиндров на переобогащенной смеси.
Рассмотрим работу системы управления двигателем при работе с коррекцией состава смеси по сигналу датчика состава смеси. Если система управления двигателем получает низкий уровень сигнала с лямбда зонда (около нуля вольт), то на следующих циклах работы количество топлива увеличивается. Когда топлива станет слишком много, датчик зафиксирует богатую смесь и сигнал поднимется до 1 вольта. Реакцией системы будет уже плавное уменьшение количества топлива. И так далее. Такой режим называется работой по замкнутой петле по сигналу лямбда зонда.
Для примера взят автомобиль Audi 1994 года 2,6 V-образный 6-ти цилиндровый. Данный мотор работает как два 3-х цилиндровых и каждая сторона двигателя работает как отдельный банк а так же имеет свой выпускной тракт и состав смеси регулируется отдельно по сигналам двух лямбда зондов. Для проведения эксперимента важно, что система не отключает лямбда регулирование при возникновении пропусков воспламенения в цилиндрах.
Мы вывели на экран осциллографа сигналы с обоих лямбда зондов, а также на сканере отобразили график топливной коррекции для каждого банка цилиндров.
Прогрели двигатель и начали проводить эксперимент.
На записи видно, что оба банка работают по замкнутой петле — датчики попеременно фиксируют то богатую, то бедную смесь. Коррекция топливоподачи по сканеру в диапазоне 0,98 — 1.02 для обоих сторон двигателя.
Мы для эксперимента на данном двигателе под высоковольтные провода подставили контактные проводки, и можем искру любого цилиндра левой головки закоротить на массу. Таким образом, мы можем отключить искру во время работы мотора.
Проведем первый эксперимент, отключим искру пятого цилиндра. По осциллографу видно, что напряжение датчика кислорода данного банка упало почти до ОВ. Датчик стал фиксировать несгоревший кислород в отработанных газах левой стороны двигателя. По сканеру видно, что блок управления стал реагировать на данный сигнал, добавляя топливо цилиндрам левой головы. Но сколько бы форсунки не впрыскивали топлива в цилиндры, в выхлопе данной головки все равно останется кислород из неработающего пятого цилиндра. Обратите внимание,что, несмотря на кислород в выхлопе, датчик кислорода левой головы показал богатую смесь в тот момент, когда коррекция достигла 1,10. И блок управления стал работать по замкнутой петле с топливной коррекцией 1,08-1,10.
Вернем искру. Сгорание в цилиндре восстановилось, и лишний кислород перестал поступать в выхлопную систему. Датчик показал богатую смесь. Дождемся стабилизации работы двигателя. Топливные коррекции вернулись в норму и находятся в районе 1,00. Датчики снова попеременно показывают богатую — бедную смесь.
Отключим форсунку четвертого цилиндра. В выхлоп будет поступать весь кислород с неработающего цилиндра. Датчик снова показывает бедную смесь, Блок управления увеличивает топливные коррекции. Количество топлива поступающего в 5-й и 6-й цилиндр плавно растет, но весь кислород с 4-го цилиндра все равно поступает в выхлоп. Но когда топливная коррекция достигла 1,23- 1,25, датчик снова показал богатую смесь, не смотря на то, что в выхлопную систему данного банка поступает треть несгоревшего воздуха.
Подключаем разъем форсунки на место и ждем стабилизации работы двигателя. Топливная коррекция вернулась к исходным 0,98 — 1,02.
Теперь отключим искру сразу во всех цилиндрах левой стороны двигателя, Двигатель будет вращаться благодаря работе цилиндров только правой стороны. При этом горения в цилиндрах левой стороны не будет, и к левому датчику кислорода будет поступать воздух и топливо. Датчик видит избыток кислорода и выдает ОВ. Для эксперимента я обогащаю смесь дополнительным топливом из баллончика. Мы видим, что датчик кислорода может показать богатую смесь, даже если в выхлопную систему поступает весь кислород воздуха и топливо без выхлопных газов.
Почему циркониевый датчик кислорода может показать богатую смесь даже при значительном содержании кислорода в выхлопе?
На рисунке представлена схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе. 1 — твердый электролит ZrO2; 2, 3 — наружный и внутренний платиновые электроды; 4 — контакт заземления; 5 — «сигнальный контакт»; 6 — выхлопная труба.
Циркониевый датчик содержит оксид циркония с примесью оксида иттрия. Такой состав создает в кристаллической решетке ячейки со свободными двухвалентными связями, к которым может присоединяться ион кислорода и перемещаться через слой оксида циркония, и перемещать положительный заряд с одной поверхности на другую.
Процесс перемещения заряженного иона напоминает механизм перемещения электронов и дырок в полупроводниках. Ионы кислорода становятся достаточно подвижны, и могут перемещаться в слое оксида циркония только при температуре более 350 градусов. Работа датчика возможна только при температуре чувствительного элемента не ниже 300…350°С (иначе он не выдает сигнал), а предельная температура может достигать 950°С. Первые модификации «лямбда-зонда» необходимо было располагать как можно ближе к выпускному коллектору для обеспечения скорейшего прогрева и включения датчика в работу. Современные зонды снабжены специальным нагревательным элементом, и место установки стало не столь критичным.
Оксид циркония с обеих сторон покрыт микропористым слоем платины, которая играет роль электродов. Но нагретая платина работает как микрокатализатор для окисления СО и СН на поверхности датчика. Мы знаем, что катализатор начинает выполнять свою функцию только после прогрева. Аналогично и датчик кислорода включается в работу только после прогрева, когда нагретая платина станет работать катализатором, и на поверхности датчика будет происходить реакция между кислородом, который присутствует в выхлопе и частицами угарного газа и несгоревшего топлива. Пока кислорода в выхлопе будет достаточно для реакции полного окисления СО и СН, до тех пор, ионы кислорода из оксида циркония не отбираются, нет движения заряженных частиц через слой оксида циркония, следовательно, напряжение на выходе датчика не возникает, и сигнал будет около ОВ. Платине, как катализатору легче взять кислород с выхлопных газов, чем отобрать его у оксида циркония и тратить энергию на генерирование электрического тока в датчике. Если кислорода в выхлопе станет недостаточно для полного каталитического окисления СО и СН на поверхности платины датчика тогда недостающий атом кислорода будет взят с оксида циркония. Это вызовет движение заряженных ионов кислорода изнутри датчика наружу, и напряжение нашего датчика поднимется до 1В. Такая конструкция датчика позволила получить скачек напряжения при переходе от бедной смеси к богатой.
Каждый раз, когда сигнал датчика имеет высокий уровень, ионы кислорода движутся с внутренней полости датчика в выхлопную систему. Для нормальной работы датчика кислород внутрь датчика должен постоянно поступать из атмосферы. Поскольку датчик генерирует очень слабый ток то и количество кислорода ему достаточно получать по проводам, внутри изоляции между токопроводящих жил.
Нужно следить, чтоб данный путь кислорода не перекрыть. Не допускается обрабатывать разъем датчика кислорода жидкостями типа WD-40. Не допускается пайка проводов с флюсом, который попадает внутрь изоляции провода, перекрывает путь кислороду. Даже использование термоусадочной трубки с клеевым слоем приводит к выходу из строя датчика. Соединять провода датчика кислорода можно только методом обжима и использовать обычную термоусадочную трубку.
Если на сигнальном проводе датчика по отношению к проводу массы или массе датчика появляется отрицательное напряжение более -450мB это результат недостаточного содержания кислорода в эталонной камере в результате герметизации проводов или трещины керамического купола или проникновение выхлопных газов внутрь датчика. В таком случае в режиме принудительного холостого хода, когда в выпускную систему попадает воздух, ионы кислорода движутся через слой оксида циркония в обратном направлении внутрь в эталонную камеру, и напряжение датчика меняет полярность.
Теперь мы можем назвать циркониевый лямбда зонд датчиком избытка кислорода в выхлопных газах. Только если кислорода в выхлопе будет недостаточно для полного каталитического окисления угарного газа и углеводородов, только тогда сигнал датчика примет высокий уровень и будет сигнализировать о богатой смеси.
Теперь становится ясно, почему циркониевый лямбда зонд меняет напряжение скачком, а не пропорционально содержанию кислорода в выхлопе и содержание кислорода в эталонной камере может быть менее 21%. Почему точка переключения находится строго в стехиометрии независимо от типа используемого топлива. Почему датчик может показывать богатую смесь даже при наличии в выхлопе кислорода.
Андрей Шульгин, Авто-Мастер
Как провести диагностику широкополостного лямбда зонда
Диагностика широкополосного датчика начинается с визуального осмотра наконечника элемента, проверки токопроводящих выводов. Это самый простой способ провести диагностику, осматривать датчики нужно каждые 10 000 пробега, вынимая детали с посадочного места на выходном коллекторе. Что проверяют.
- Надежность контакта клеммы с зондом.
- Наличие механических повреждений.
- Выкручивают элемент проверяют кожух.
На рабочем зонде могут быть незначительные отложения, которые легко счищаются (даже ногтем). На наконечнике не должно быть окисла. Зонд необходимо поменять, если после демонтажа на наконечнике замечают изменение покрытия.
Сажевые отложения возникают при систематически переобогащенной топливной смеси, если вышел из строя нагреватель зонда. Сажа засоряет внутренние блоки, снижает скорость реакции и точность передачи данных.
Серые, белые отложения свидетельствуют, что в моторном масле или топливе большое количество присадок. Отложения забивают проходы в камеру, снижают точность сигнала в 5 раз.
Свинец накапливается на наконечнике зонда и снижает чувствительность платиновых панелей. Возникает при использовании некачественного топлива (чаще на дизельных моторах).
Почему лямбда-зонд выходит из строя?
Причины, по которым данные элементы выходят из строя, могут быть различными. Зачастую это разгерметизация корпуса. Также возможны поломки из-за проникновения в датчик внешнего кислорода и отработанных газов. Еще одна из типовых причин – это перегрев.
Возникает из-за плохой сборки мотора или неверной работы системы зажигания. Также часто датчик ломается вследствие морального износа, неверно подающего или нестабильного электропитания. Возможны и механические повреждения.
Симптомы неисправности
Основными признаками, свидетельствующими о поломке кислородного датчика, считаются:
- Повышенная токсичность выхлопных газов;
- Нестабильная, прерывистая разгонная динамика;
- Кратковременное включение лампы «CHECK ENGINE» при резком увеличении оборотов;
- Нестабильные, постоянно меняющиеся холостые обороты;
- Увеличение расхода топлива;
- Перегрев катализатора, сопровождающийся потрескивающими звуками в его зоне при заглушённом моторе;
- Постоянно горящий индикатор «CHECK ENGINE»;
- Беспричинная сигнализация бортового компьютера о переобогащённой ТВС.
Нужно иметь в виду, что все эти отклонения могут быть симптомами и других поломок.
Длительность службы лямбда-зонда примерно 60-130 тыс. км. Причинами сокращения срока службы и поломки устройства может стать:
- Применение при монтаже датчиков, не рассчитанных на высокие температуры герметиков (силиконовых);
- Некачественный бензин (повышенное содержание этила, свинца, тяжёлых металлов);
- Попадание масла в выхлопную систему в результате износа маслосъёмных колец или колпачков;
- Перегрев датчика в результате некорректно выставленного зажигания, переобогащённой ТВС;
- Множественные попытки завести мотор, приводящие к проникновению горючих смесей в систему выхлопа;
- Нестабильный контакт, замыкание на массу, обрыв выходного провода;
- Нарушение целостности конструкции датчика.
Признаки
Как определить, что кислородный датчик (лямбда-зонд) требует замены? Узнать это очень просто. Поскольку датчик будет неисправен, на электронный блок заведомо поступят ошибочные сигналы и данные. В результате мотор будет работать нестабильно. Причиной тому является неправильно сформированная топливовоздушная смесь. Неисправность кислородного датчика широкополосного типа сопровождается:
- Увеличением расхода топлива.
- Нестабильными оборотами на холостом ходу.
- Неконтролируемым нагреванием катализатора. после остановки мотора, он может потрескивать.
- Изменением концентрации СО в газах. Выхлоп будет более едким и неприятным на запах.
- Появлением лампы «Проверьте двигатель» на панели приборов.
- Снижением разгонной динамики.
- Провалами (рывками) при попытке набрать скорость.
Если появился хотя бы один из вышеперечисленных симптомов, это повод произвести детальную проверку широкополосного датчика кислорода.
Нулевой показатель тока
Существует еще одна ситуация, когда во время работы ДВС кислородный зонд отправляет на ЭБУ сигнал нулевой силы тока. Это обозначает, что контроллер не смог вывести параметр лямбда на «1» или стехиометрию, существуют несколько распространенных причин:
- критичный дефект;
- неисправность зонда.
На практике водитель в одном случае из десяти увидит код ошибки, говорящей, что датчики не работает. ЭБУ не проверяет качество работы лямбда зонда, поскольку для мониторинга необходимо принудительно обогатить топливную смесь, затем критически увеличить поступление воздуха в цилиндры. Это способствует токсичному выхлопу. Поскольку вся система направлена на поддержку экологического стандарта отработанного газа, проверить рабочее состояние датчика можно только принудительно, вручную.
Критичный дефект возникает на исправном датчике, если его система корректировки на пределе параметров настройки. В этом случае на доске приборов появляется код ошибки «Превышение предела корректировки топливной смеси».
И в первом и во втором случае проводится демонтаж датчика, его проверка на работоспособность, вторым шагом идет проверка топливного состава. Если смесь подается в цилиндры блока неправильного состава, проводится корректировка качества смеси через настройку форсунок, зажигания, других элементов системы топливоподачи.
На что влияет кислородный датчик?
Работа ДВС сопровождается выделением выхлопных газов (ВГ), содержащих вредные для человека вещества. Их значительная концентрация влияет на самочувствие и здоровье окружающих. Среди этих токсичных веществ необходимо особо отметить угарный газ, не полностью сгоревшие углеводороды и окислы азота. Чтобы уменьшить их содержание в составе ВГ, как уже отмечалось, на современных автомобилях используется каталитический нейтрализатор.
Однако у него есть особенность – он успешно работает в достаточно ограниченном диапазоне соотношения кислорода и бензина, и если смесь обогащенная, или наоборот, слишком бедная, то содержание в составе ВГ токсичных веществ остается высоким. Вот кислородный датчик и участвует в обеспечении необходимого соотношения кислорода и бензина.
Содержание токсичных веществ зависит от степени сгорания топливовоздушной смеси (ТВС) и ее состава. Если в ней мало бензина, она называется обедненной, если много – обогащенной. Однако понятие «много или мало» достаточно неопределенное и не может использоваться для управления составом ТВС. Вот для устранения этой неопределенности и нужен кислородный датчик, у него есть ещё одно название – лямбда зонд.
С его помощью контроллер управления двигателем отслеживает процесс сгорания ТВС, для чего измеряется в ВГ содержание кислорода. При необходимости изменяется состав ТВС таким образом, чтобы обеспечить полное сгорание топлива и уменьшить выделяемое количество токсичных веществ.
Основные типы устройств
Сегодня можно выделить несколько типов кислородных датчиков. Все они могут отличаться по нескольким критериям:
- по числу проводов — от 1 до 6;
- по организации сенсорного элемента (есть два вида — пластинчатые и пальчиковые);
- по крепежу в выхлопной трубе — фланцевые или на резьбе;
- по диапазону измерений параметра лямбды — широкополосные (измерение производится в диапазоне от 0.7 до 1.6) или узкополосные, контролирующие уровень лямбда на уровне выше единицы.
Каждый из типов устройств имеет свои особенности.
Одно контактные устройства.
Оборудованы одним сигнальным проводом. Именно по нему передается сигнал, генерируемый устройством.
2-контаткные датчики.
Оборудуются двумя проводами. Один является сигнальным, а второй выполняет функцию заземления через корпус устройства.
С помощью заземляющего проводника можно точно определить показатели сигнального провода.
3-контактные.
Здесь предусмотрен сигнальный провод, один «массовый» провод и третий провод, направляемый к нагревательному устройству.
Особенность таких датчиков — быстрое достижение нужной температуры, повышенный период службы устройства, а также меньшие требования к выхлопной системе.
Нагревательный элемент, который монтируется в системе, имеет мощность 12 или 18 Вт.
4-контактные – устройства.
В них предусмотрено четыре провода:
- сигнальный проводник,
- провод,
- питающий нагревательное устройство;
- третий провод — «земля»;
- четвертый провод — может использоваться для решения каких-либо других задач (в зависимости от системы управления автомобиля).
Может быть такое положение контактов.
К примеру, его можно использовать в качестве заземления или же для питания нагревательного элемента.
Особенность современных лямбда-зондов в том, что они взаимозаменяемы и имеют схожую конструкцию.
К примеру, можно менять датчики с подогревом на устройства без подогрева. При этом возможны проблемы с разъемами или невозможностью запитать устройство.
В случае нехватки проводов их можно проложить самостоятельно, а в качестве разъема использовать контакты автомобиля.
Маркировка может отличаться, но провод подачи сигнала всегда окрашивается в черный цвет.
«Масса» может быть желтой, серой или белой.
Устройство и особенности работы лямбда-зонда
Не секрет, что к современной автомобильной технике предъявляются высокие экологические требования. Благодаря различным датчикам и сложным системам появилась реальная возможность максимально очистить выхлопные газы от вредных примесей. Основным из всех устройств очистки по-прежнему является каталитический нейтрализатор, который входит в состав выпускной системы. Особенности его конструкции позволяют подавить поток вредных веществ. Однако это еще не все, поскольку результативность его работы напрямую зависит от того, насколько эффективно топливная смесь сгорает в цилиндрах.
Несмотря на то, что впрыск топлива на современных двигателях контролируется при помощи электроники, необходимо еще и получить качественную рабочую смесь. Это возможно благодаря кислородному датчику (лямбда-зонду). Рассмотрим его устройство, особенности работы и наиболее часто встречаемые неисправности.
Конструкция и принцип действия лямбда-зонда
Итак, основное назначение датчика кислорода – управление процессом смесеобразования. Это возможно благодаря замеру содержания кислорода в автомобильных выхлопах. Далее эти показания передаются в систему электронного управления, которая корректирует рабочие показатели смеси. Лямбда-зонд может входить в конструкцию глушителя, либо устанавливаться на выпускной патрубок силового агрегата. Отметим, что на машине может быть установлено два кислородных датчика. В однолямбдной системе датчик устанавливается перед каталитическим нейтрализатором, в двухлямбдной – помимо основного, дополнительный датчик стоит сразу за катализатором. Благодаря двум датчикам в системе, производится более точная корректировка состава воздушно-топливной смеси, а также контроль над эффективностью работы катализатора.
Как работает узкополосный датчик кислорода?
Известно, что кислородные датчики бывают двух видов:
— двухуровневые (узкополосные);
— широкополосные.
Узкополосный датчик имеет простую конструкцию и выступает в качестве генератора волнообразных сигналов. Если в конструкцию лямбды входит нагревательный элемент, тогда количество контактов на его разъеме может быть увеличено до четырех. Что касается устройства датчика, то он является обыкновенным гальваническим элементом, правда в роли электролита представлены керамические соты, которые свободно пронизывают ионы кислорода, но, для того, чтобы они стали полностью проводимыми, необходим нагрев до температуры около 400 градусов.
Как только в систему топливовпрыска поступает сигнал с кислородного датчика, согласно его показаний начинается приготовление эталонной рабочей смеси, при сгорании которой, на контактах лямбды вырабатывается напряжение, величиной примерно равной 0,6 В. В случае когда смесь плохо обогащена, выхлопные газы авто перенасыщены кислородом, поэтому напряжение на контактах датчика снижается в половину, следовательно, форсунки открыты дольше. В хорошо обогащенной смеси сгорает больше кислорода, поэтому его содержание в выхлопе незначительно. Напряжение датчика увеличивается, а время открытия форсунок уменьшается. Поскольку силовой агрегат во время движения работает в разных режимах, корректировка смесеобразования постоянно меняется. Соответственно, напряжение на контактах лямбды постоянно изменяется, таким образом, датчик работает в волнообразном режиме.
Как работает широкополосный датчик?
Поскольку постоянно ужесточаются экологические требования, предъявляемые к выхлопным газам транспортных средств, соответственно, необходимо добиться полного сгорания топливной смеси в цилиндрах мотора. По этой причине узкополосные лямбда-зонды не особо эффективны, поэтому их с успехом заменили широкополосные устройства.
Особенностью работы такого датчика является возможность корректировки смесеобразования отдельно для каждого цилиндра, практически мгновенное реагирование на изменение происходящих в двигателе процессов, и быстрое включение в работу. Это положительно отражается на работе силового агрегата, и, в разы снижает количество вредных химических соединений в выхлопных газах.
Конструкция сложного кислородного датчика состоит из разделенных зазором насосных и измерительных ячеек, между которыми находится газ с постоянным составом. Зазор между сотами сложной лямбды сделан таким образом, что находящийся в нем газ не контактирует с выхлопными газами, что позволяет максимально точно определить содержание кислорода в них, путем его откачивания. Выхлопы необогащенной смеси перенасыщены кислородом, который откачивается из зазора между ячеек при помощи положительного электрического заряда. В случае, с обогащенной смесью, кислород, наоборот закачивается в измерительный контур, для этого заряд меняется на противоположный. Система электронного управления, постоянно контролирует величину тока проходящего через ячейки, и подбирает ему соответствующий параметр. В отличие, от простого кислородного датчика, сложная лямбда имеет криволинейный выходной сигнал.
Симптомы неисправности кислородного датчика
Несмотря на всю простоту конструкции, лямбда-зонд считается самым уязвимым элементом моторного агрегата, ресурс которого исчисляется максимальным пробегом в 80 тыс. км, после чего, довольно часто, лямбда начинает работать некорректно.
Диагностировать какую-либо его неисправность достаточно проблематично из-за того, что он не выходит из строя сразу, а начинает работать с перебоями. Например, неправильно считывает показания, вследствие чего топливоподача в цилиндры осуществляется некорректно. Если же система управления продолжительное время не получает данные о содержании кислорода в выхлопе автомобиля, она переходит в режим при котором использует средние показатели, в результате чего нарушается состав рабочей смеси, силовой агрегат начинает работать с перебоями.
Распространенными признаками поломки кислородного датчика являются:
— повышенное потребление топлива;
— работа силового агрегата на холостых оборотах с перебоями;
— превышение СО в выхлопах транспортного средства;
— резкое снижение ходовых характеристик автомобиля.
Мотор, который оборудован двумя лямбда-зондами «болезненнее» реагирует на некорректную работу либо поломку одного из них. Стоит отметить, что возможно, двигатель вообще перестанет функционировать, пока кислородный датчик не будет заменен исправным.
Зачастую, датчик выходит из строя, либо работает неправильно по следующим причинам:
— использование некачественного топлива;
— нарушена работа системы топливовпрыска;
— неправильно отрегулировано зажигание;
— наличие выработки в цилиндрах и износ поршней;
— повреждение корпуса либо рабочего элемента кислородного датчика.
При продолжительной эксплуатации лямбды, причиной ее поломки очень часто становится рабочий элемент датчика. В этом случае замены зонда не избежать. Но, бывает и так, что вновь установленный на автомобиль кислородный датчик начинает работать с перебоями. В таком случае, необходимо проверить его корпус и рабочую часть на предмет скопления на них различных загрязнений и отложений, которые затрудняют нормальную работу устройства. Решением проблемы станет чистка датчика раствором ортофосфорной кислоты, после которой лямбду необходимо хорошо промыть водой, высушить, и только потом установить на машину. Если же это не помогло, и кислородный датчик по-прежнему работает неправильно, единственный выход из ситуации – его замена.
Об исправности датчика красноречиво говорит правильная и бесперебойная работа силового агрегата, умеренное потребление топлива, снижение вредных веществ в выхлопе авто и отсутствие ошибок в памяти ЭБУ.
Видео расскажет о принципе работы лямбд-зонда (кислородного датчика):
Видео расскажет о том, как проверить работу лямбд-зонда своими руками:
Широкополосный лямбда-зонд: главные отличия, принцип работы
Широкополосный датчик для измерения уровня кислорода — лямбда-зонд, который монтируется в современных авто.
Его особенность — выполнение функций катализатора на входе в устройство. Измерение необходимых параметров происходит благодаря использованию силы входного тока.
Главное отличие широкополосного датчика заключается в том, что в его составе есть два рабочих элемента — закачивающий и 2-точечный керамический обогреватель.
В процессе закачивания кислород пропускается через соответствующий элемент под действием силы тока.
Принцип действия широкополосного зонда построен на поддержании напряжения в пределах 450 мВ.
Сама разность потенциалов появляется между электродами двухточечного элемента. Достижение нужного напряжения гарантируется, благодаря изменению силы тока закачивания.
Если объем кислорода в выхлопе снижается, то напряжение между электродами растет, а ЭБУ получает соответствующую команду.
После этого формируется сигнал требуемой силы тока, что приводит к выравниванию напряжения.
Сила тока анализируется в ЭБУ, после чего блок управления воздействует на систему впрыска.
Нормальная работа датчика кислорода возможна при температуре в 300 градусов Цельсия, которая достигается с помощью нагревателя.
Сколько времени работает лямбда-зонд
Первые варианты кислородных датчиков, с двумя проводами, при нормальном режиме эксплуатации работали в районе 50 тыс. км пробега. Новая конструкция зондов с тремя или четырьмя проводами проработает в районе 80 тыс. км. Лямбда-зонды, устанавливаемые в современные автомобили способны отработать до замены около 150 тыс. км.
Отдельный подвид этих датчиков – широкополосные лямбда-зонды, которые проходят не менее 150 тыс. км., обладая рядом преимуществ. Они оборудованы отдельной шкалой вывода, поэтому водитель может в реальном времени видеть, какая смесь подается в двигатель. Это устройство работает во всем диапазоне оборотов и обрабатывает информацию с гораздо большей скоростью. Особенно полезны такие датчики для автовладельцев, которые любят заниматься тюнингом своих моторов.
Видео: Лямбда! Датчик Кислорода и Повышенный расход топлива
Назначение
Знание особенностей работы и назначения лямбда зонда весьма полезны для автолюбителя.
Во-первых, уже никто не сможет обмануть владельца транспортного средства, а во-вторых, в случае поломки можно самому поставить «диагноз».
Задача лямбда-зонда — создать условия для выполнения функций каталитическим нейтрализатором, который осуществляет фильтрацию выхлопа автомобиля.
Работа катализатора.
По сути, катализатор снижает вредность выхлопа, а лямбда-зонда осуществляет контроль работы данного устройства.
Название зонда произошло от известной греческой буквы «лямбда», которой обозначается объем кислорода в подготовленной горючей смеси.
Величина лямбды составляет 14.7 единиц на одну единицу топлива. Пропорциональность обеспечивается, благодаря электронному впрыску топливной смеси и работе лямбда-зонда.
Назначение устройства зависит и от его позиции в транспортном средстве.
Как правило, датчик кислорода монтируется перед катализатором, что позволяет точно измерять уровень кислорода в горючей смеси, а в случае дисбаланса давать сигнал блоку управления впрыска.
Чтобы повысить эффективность работы, на новых моделях авто ставится не один, а два датчика, закрепляемые с одной и другой стороны катализатора.
Такая конструкция позволяет с большей точностью анализировать состав выхлопа.
Подводим итоги
Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.
Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.
Важная особенность
Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.
Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.
Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.
Как устроен кислородный датчик
Наиболее популярны устройства на основе диоксида циркония. Выглядят они как металлический стержень, конец которого скруглен, с проводом. Непосредственно с выхлопными газами контактирует наружный электрод (для этого в защитном кожухе предусмотрены отверстия), в то время как с атмосферой взаимодействует внутренний. Между ними как раз и находится двуокись циркония или твердый электролит. Оба электрода имеют платиновое напыление. Есть и нагревательный элемент, который призван как можно скорее выводить лямбда-зонд на высокую рабочую температуру в районе 300 °С.
Замена датчика
Проверка проводки зонда достаточно кропотливая работа, в большинстве случаев на СТО предлагают только поменять узел, если нарушена проводка, но учитывая, стоимость оригинального широкополостного датчика начинается с 10 000 руб. многие водители успешно находят неисправность в цепи и устраняют пробой.
Переустановка зонда занимает 10–15 минут при выключенном и желательно остывшем моторе. Отключается АКБ, специальным ключом снимается затяжка датчика, деталь вынимается с выходного коллектора и отсоединяется от ЭБУ. Установка нового происходит аналогично, зонд вкручивается в посадочное место рукой, затягивается. При замене проверяется состояние седла, степень износа уплотнительных колец. При необходимости проводится замена.
Широкополосные кислородные лямбда зонды достаточно сложный прибор, которые синхронизирован с прошивкой электронного блока конкретного автомобиля. Если газоанализатор можно было легко переделать из старого датчика своими руками, то в случае с кислородниками проводить такие работы опасно. Исключение — большой опыт в программировании и достаточные знания по настройке данного типа оборудования.
Ошибки
Если есть проблемы с датчиком, система автомобиля будет всячески пытаться сообщить об этом. Можно подключить специальное устройство в диагностический разъем, и все будет видно. Электроника автомобиля точно знает, как проверить работу датчика кислорода. Даже автомобили ВАЗ оснащены диагностической системой. Ошибки начитаются с номера P130 по P141 – это все коды, связанные с лямбдой. Чаще всего появляются сообщения, которые связаны с неисправностями в цепях подогрева. Из-за этого на ЭБУ приходит неверная информация. Можно попробовать отыскать обрыв провода, но лучше заменить датчик кислорода. Как проверить его на работоспособность, вы уже знаете.