Устройство современного двигателя внутреннего сгорания


Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.
В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Что такое ДВС и для чего он нужен?

Устройство двигателя

Чтобы транспорт ехал, что-то должно приводить его в движение. В разные времена это были запряженные животные, затем на смену пришли паровые и электродвигатели (да, прародители современных автомобилей появились даже раньше, чем традиционные ДВС), затем моторы, работающие на горючем топливе.

Современный двигатель внутреннего сгорания – это механизм, преобразующий энергию вспышки топлива (тепла) в механическую работу. Несмотря на достаточно громоздкую конструкцию, на сегодняшний день ДВС остается самым удобным источником энергии.

Электротранспорт, конечно, всё больше входит в обиход, но время его «заправки» сводит на нет все преимущества – канистру с электричеством в багажник не положишь.

Свое применение ДВС нашел во многих сферах: по одинаковому принципу работают автомобили, мотоциклы и скутеры, сельскохозяйственная и строительная техника, водный транспорт, двигатели самолетов, военная техника, газонокосилки… То есть, практически всё, что ездит или летает.

Поршень: отсюда начинается всё


Поршневой цикл: схема
Предлагаем вам посмотреть занимательное видео, в котором подробно рассказывается и показывается каким именно образом работаем двигатель внутреннего сгорания автомобиля:

Например, когда указатель тахометра в вашей машине приближается к 2000 об./мин. (2 тысячи оборотов коленвала), это означает, что поршень совершает 4000 ходов в это время, и смесь попадает в цилиндр 1000 раз! Все это за минуту. И всего на один цилиндр. Теперь подумайте, сколько топлива нужно двигателю, если вы «стреляете» в него все время, разгоняя до 6000 оборотов при нажатой педали газа в пол!

Устройство двигателя внутреннего сгорания

Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.

Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.

  1. Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.


    Блок цилиндров

  2. Кривошипно-шатунный механизм, он же КШМ – узел, в котором происходит преобразование прямолинейного движения поршня во вращательное. Состоит из коленвала, поршней, шатунов, маховика, а также подшипников скольжения (вкладышей), на которые опирается коленвал и крепления шатунов.


    Кривошипно-шатунный механизм: 1 — цилиндр; 2 — маховик; 3 — шатунный подшипник; 4 — коленчатый вал; 5 — колено; 6 — коренной подшипник; 7 — шатун.

  3. Газораспределительный механизм (ГРМ) – это система подачи в цилиндры топливно-воздушной смеси и отвода выхлопных газов. Состоит из распредвалов, клапанов с коромыслами или штангами, ремня ГРМ, благодаря которому вся система работает синхронно с оборотами коленвала.


    Газораспределительный механизм

  4. Система питания – это узел, в котором происходит подготовка топливно-воздушной смеси, которая затем подается в камеры сгорания. В зависимости от конструкции система подачи топлива может быть карбюраторной (одна форсунка на двигатель), инжекторной (форсунки установлены перед впускным клапаном каждого цилиндра), с непосредственным впрыском (форсунка установлена внутри камеры сгорания). Включает в себя топливный бак с фильтром и насосом, карбюратор (опционально), впускной коллектор, форсунки, ТНВД (в дизельных двигателях), воздухозаборника с воздушным фильтром.


    Система питания

  5. Система смазки двигателя – обеспечивает подачу смазки в каждый из узлов трения, а также на участки, требующие дополнительного охлаждения (например, на нижнюю часть поршней). Состоит из масляного насоса, подключенного к коленвалу, системы трубок и каналов, выходящих на пары трения, масляного фильтра, масляного поддона. В зависимости от конструкции различаются двигатели с «сухим» и «мокрым» картером. У первых емкость для сбора моторного масла расположена отдельно, во вторых – непосредственно под двигателем. Система смазки двигателя: 1 – масляный насос; 2 – пробка сливного отверстия картера; 3 – маслоприемник; 4 – редукционный клапан; 5 – отверстие для смазывания распределительных шестерен; 6 – датчик сигнальной лампы аварийного давления масла; 7 – датчик указателя давления масла; 8 – кран масляного радиатора; 9 – масляный радиатор; 10 – масляный фильтр.
  6. Система зажигания – нужна для поджига топливной смеси в камере сгорания. Применяется только на бензиновых двигателях, поскольку дизтопливо воспламеняется само от сжатия. Включает в себя свечи зажигания, высоковольтные провода, катушки зажигания, а также распределитель (трамблер) на двигателях старого типа. В современных моторах система зажигания обходится без трамблера и даже без проводов: используется конструкция «катушка на свече». Система зажигания двигателя: 1 – генератор; 2 – выключатель зажигания; 3 – распределитель зажигания; 4 – кулачок прерывателя; 5 – свечи зажигания; 6 – катушка зажигания; 7 – аккумуляторная батарея.
  7. Система охлаждения – заботится о поддержании заданной рабочей температуры двигателя. Жидкостная система охлаждения состоит из теплоносителя (охлаждающей жидкости, антифриза), рубашки охлаждения (сеть камер и каналов внутри блока цилиндров), теплообменника (радиатор охлаждения), водяного насоса и термостата.


    Система охлаждения

  8. Электросистема – это источники энергии, необходимой для старта двигателя и поддержания его работы. К электросистеме относится аккумуляторная батарея, генератор, стартер, проводка и датчики работы двигателя.
  9. Выхлопная система – отводит продукты сгорания из двигателя, выполняет функцию доочистки выхлопных газов, регулирует звук работы мотора. Состоит из выпускного коллектора, катализатора и сажевого фильтра (опционально), резонатора, глушителя.


Выхлопная система
Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.


Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.


Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.


Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.


Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.


Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Как работает двигатель автомобиля?

Так как же это работает и почему? Что заставляет автомобиль воспроизводить приятную симфонию звуков после поворота ключа в замке зажигания? Как получилось, что двигатель способен привести в движение колеса? Было бы сложно описать последовательно все существующие типы двигателей в мире. Однако существует схема, которая, за исключением нескольких случаев, остается неизменной и на которой проще всего объяснить, как работает двигатель автомобиля, то есть тот тип моторов, который сжигает бензин, дизельное топливо или масло.

Как работает двухтактный мотор

Выше было упомянуто, что поршневые двигатели делятся как на 4-тактные, так и на 2-тактные. Принцип работы вторых немного отличается от того, что был описан ранее. Да и само устройство такого агрегата значительно проще предыдущей конструкции. В двухтактном агрегате всего два окна в цилиндре — впускное и выпускное. Второе расположено чуть выше первого, и сейчас будет объяснено, для чего это.

Поршень при начале первого такта, до этого перекрывавший впускное окно, начинает двигаться наверх, в результате чего перекрывает собой окно впуска топлива. Поршень в это же время продолжает опускаться, что приводит к сжатию рабочей смеси. Как только деталь достигает нужного положения, на свече образуется первая искра, и созданная смесь тут же поджигается, воспламеняясь. Впускное окно к этому моменту уже открывается. Оно пропускает очередную порцию топлива и воздуха, продолжая работу механизма.

Начало второго такта характеризуется сменой направления движения поршня — он начинает перемещаться вниз. На него действуют газы, стремящиеся расширить имеющееся пространство. Поршень перемещается, открывая впускное окно, и оставшиеся после сгорания смеси газы уходят, пропуская внутрь новую порцию топлива.

Какая-то часть рабочей смеси также покидает цилиндр через открытый выпускной клапан. Поэтому становится понятным, почему двухтактные двигатели требуют такого количества топлива.

Преимущества и недостатки

Преимуществом двухтактных поршневых агрегатов является достижение большой мощности при небольшом рабочем объеме, если сравнивать их с четырехтактными. Однако владелец авто будет страдать от внушительных расходов топлива, из-за чего в скором времени в его голове возникнет идея поменять агрегат.

Также плюсами двухтактных ДВС можно назвать простую конструкцию, понятную и равномерную работу, маленький вес и компактный размер. К минусам следует отнести грязный выхлоп, нехватку различных систем, а также быстрый износ деталей конструкции. Довольно часто владельцы машин с таким двигателем жалуются на перегрев агрегата и его поломку.

Четырехтактный ДВС

Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Плюсы и минусы

Двигатели внутреннего сгорания имеют немало достоинств:

  • удобство и простота использования;
  • доступность топлива;
  • быстрая заправка;
  • долговечность;
  • сохранение работоспособности даже после нескольких ТО.

К тому же для многих автовладельцев звук мотора является лучшей музыкой. Зная это, производители настраивают их особым образом.

Но и минусы у агрегатов существуют:

  • более низкий коэффициент полезного действия по сравнению с электрическими моделями;
  • сложность системы.

Современные модели уже невозможно починить и обслуживать самостоятельно в гараже. Но чем сложнее конструкция, тем больше слабых мест в ней остается. А значит ТО придется проходить все чаще и чаще.

Требует упоминания и экологический аспект. Многие европейские города задыхаются от бензинового смога и не видят солнечного света. Поэтому требования к экологической безопасности регулярно ужесточаются.

Двигатели внутреннего сгорания с течением времени не теряют своих позиций. Несмотря на то, что инженеры и изобретатели бьются над созданием принципиально новых моторов, этот вопрос до сих пор не решен. А значит в ближайшие годы человечество будет пользоваться все теми же привычными, надежными и удобными агрегатами.

Классификация двигателей

Конструкция ДВС постоянно совершенствуется. Разработчики внедряют новые идеи, а появление более совершенных материалов открывает дополнительные возможности. С учетом этих особенностей, разработано множество разновидностей двигателей, с классификацией их по конструктивному исполнению.

В зависимости от характеристики рабочего цикла, ДВС могут быть:

  • двухтактными;
  • четырехтактными.

Особенности работы и различия таких моторов рассматривались выше.

Исходя из типа конструктивного устройства, моторы делят на две такие группы:

  • поршневую – наиболее распространенная разновидность, привычная для большинства автовладельцев, в которой агрегат состоит из коленвала и поршней, двигающихся в цилиндрах;
  • роторно-поршневого – принцип работы которого изобретен Ванкелем.

В двигателе Ванкеля, вместо привычных поршней применяется трехгранный ротор, разделяющий цилиндрическую камеру сгорания на три отсека, с цикличными процессами для каждого из них.

Роторно-поршневой агрегат не слишком распространен. Такие моторы устанавливали на некоторых моделях автомобилей. Но недостаточная эффективность конструкции привела к тому, что от этой идеи впоследствии отказались

Двигатели делят по количеству цилиндров. Общее их число может изменяться от 1 до 16. Но в наиболее распространенных силовых установках используется от 3 до 8 цилиндров. Чем большее количество цилиндров содержит двигатель, тем выше его мощность. Но одновременно приходится решать дополнительные задачи по охлаждению, распределению топлива и пр.

Чаще применяются моторы с четным числом камер сгорания, чтобы сбалансировать и уравновесить работу агрегата. Однако на некоторых моделях автомобилей Ford установлены уникальные трехцилиндровые двигатели.

Цилиндры в двигателях компонуются в различном порядке. Рядное расположение – наиболее простое в отношении обслуживания, но не самое выгодное с точки зрения общей компоновки агрегата.

Исходя из порядка расположения цилиндров, выделяют двигатели с таким их размещением:

  • рядным – когда цилиндры установлены в ряд и соединены с общим коленчатым валом;

  • V-образным – с размещением цилиндров в двух плоскостях, под взаимным углом от 45 до 90 градусов; коленчатый вал остается единым;

  • VR-образным – разновидность предыдущего устройства, при небольшом угле группы цилиндров (в пределах от 10 до 20 градусов);

  • W-образным – когда количество плоскостей цилиндров может быть 3 или четыре, при одном коленчатом вале;

  • U-образным – компоновка единого силового агрегата из двух рядных блоков, объединенных общей системой охлаждения и подачи топлива, с двумя отдельными коленчатыми валами;

  • оппозитным – когда от одного коленвала работает две группы поршней, направленных противоположно;

  • встречным – особый тип конструкции, когда в каждом из цилиндров работает по паре поршней, двигающихся в противоположных направлениях; конструктивно такой мотор представляет собой единую цилиндро-поршневую группу при двух коленчатых валах;

  • радиальным – если группа поршней приводится из одной точки общего коленвала, с шатунами, расходящимися по направлениям радиуса.

  • В автомобильной технике наибольшее распространение получили различные разновидности V-образной конструкции, включая сходные с ней типы устройства. Радиальные моторы используются на самолетах. Остальные виды силовых установок применяются ограниченно.

    С учетом типа топлива, различают двигатели внутреннего сгорания:

    • бензиновые – с применением бензина, воспламеняемого искрой от свечей и катушек зажигания, синхронизированных с вращением коленчатого вала; такие моторы развивают наибольшую скорость;
    • дизельные – в таких моторах топливо-воздушная смесь воспламеняется самопроизвольно, при достижении показателя давления критической отметки; свечи зажигания здесь отсутствуют, но используют прямой впрыск, при подаче горючего под большим давлением, учитывая характеристики среды в камере сжатия; отличаются большой мощностью, при ограниченной скорости; преимущественно устанавливают на тяжелую технику;
    • газовые – работают на сжиженном газе, что обходится дешевле бензина; предполагают более высокие температуры, что требует определенных конструктивных решений и особых сортов смазочной жидкости;
    • гибридные – совмещают применение двигателя внутреннего сгорания с электрической установкой; в обычных условиях задействован электродвигатель, ДВС используется для подзарядки аккумуляторных батарей или при возрастающей нагрузке на силовую установку;
    • водородные – применяют относительно недавно, по причине повышенной опасности, требующей соответствующих конструктивных решений; при разложении воды на водород и кислород методом электролиза, высок риск нестабильного состояния среды, с опасностью взрыва; не так давно изобрели новый способ – с раздельным поступлением этих газов; кислород забирается из воздуха, а водородом наполняют баки, помещенные на машине; в итоге процесс работы обратен электролизу, с выработкой электроэнергии и образованием воды от соединения элементов при работе.

    Наибольшее распространение получили бензиновые двигатели. Но за новыми гибридными и водородными установками, по мнению большинства ученых и конструкторов, будущее развития техники. Эти двигатели все более совершенствуются, но насколько их использование окажется эффективным – покажет время.

    Газораспределительный механизм управляет работой двигателя, открывая и закрывая клапаны для впрыска топливо-воздушной смеси. Клапаны работают от распределительного вала, приводимого в движение коленвалом за счет цепи или ремня.

    Компоновка мотора может предусматривать один распредвал при рядном размещении цилиндров, или несколько (от двух до четырех) – при V-образном.

    По мере развития техники, традиционную механическую систему впрыска сменила электронная, где момент открытия клапана определяет компьютерный блок. В связи с этим используются адаптивные и пневматические модули, прибавляющие до 30 процентов эффективности в мощностных показателях двигателей.

    Моторы делят по принципу подачи воздуха в камеры сгорания. Различают такие силовые установки:

    • атмосферные – традиционный ДВС, где воздух закачивается в камеру цилиндров поршнем;
    • турбинные – при использовании дополнительной подкачки.

    Турбокомпрессор использует энергию выхлопных газов, с вращением турбины, дополнительно нагнетающей воздух, принудительным способом.

    Преимущества моторов с турбонаддувом в возрастании мощности за счет увеличения притока воздуха. Недостатки – в излишнем усложнении конструктивного устройства.

    Бензиновый и дизельный моторы: в чем принципиальные отличия?

    В чем главное отличие бензинового двигателя от дизельного? Речь идет о принципе зажигания. Бензиновые двигатели имеют искровое зажигание, дизель является самоходным. Что означают эти слова?

    Бензиновые двигатели для взрыва в цилиндре используют искру, генерируемую на свече зажигания. В дизельных двигателях всё совсем иначе. В дизельном моторе воздух в цилиндре сжимается поршнем гораздо сильнее. Настолько, что внутри создается высокая температура, достаточная для взрыва смеси в цилиндре без искры. Бензин не возгорается из-за большого давления, соляра (дизельное топливо), наоборот, не горит при нормальных условиях от обычной искры.

    Двигатели также различаются по расположению и количеству цилиндров. В Европе наиболее популярными являются рядные двигатели – как можно заключить из названия, цилиндры, в которых движутся поршни, в них расположены в ряд. Рядный четырехцилиндровый двигатель будет отмечается символом R4, шестицилиндровый R6 и т. д. Теперь представьте, что Lamborghini собирается смонтировать большой 12-цилиндровый двигатель под капотом своей модели. Если бы производитель хотел установить все цилиндры в один ряд, двигатель занял бы много места. Таким образом, было изобретено другое решение – разветвленное расположение цилиндров в два ряда, под углом 60, 90 и даже 180 градусов (оппозитный мотор). Все двигатели этого типа обозначены буквой V, в данном случае это будет двигатель V12. Однако более популярными являются установки V6 и V8. Такие автомобили изготавливались в середине прошлого века в США, после финансового кризиса их посчитали недостаточно оправданными.

    Эти «демонические», действительно мощные, производительные моторы, встречаются реже, их можно обнаружить, чаще всего, в Subaru или Porsche. Здесь поршни расположены с обеих сторон коленчатого вала, лицом друг к другу, что делает весь двигатель, по сравнению с другими, очень плоским, но не менее объемным.

    Рядный двигатель

    Когда дело доходит до поршневого устройства, существует еще один тип двигателя, который сильно отличается от остальных. Это двигатель с одним вихревым поршнем, так называемый Двигатель Ванкеля. Также существуют специальные роторные моторы (цилиндры расположены по кругу), сферические моторы (поршень двигается не поступательно, а описывает сферу) и многие другие изобретения.

    Автор статьи–>

    В повседневной жизни нас окружает множество электроприборов. Основным элементом некоторых из них является двигатель. В одной из наших статей мы уже рассказывали о том, как устроен и работает двигатель переменного тока. Сегодня в нашей статье мы рассмотрим устройство и принцип действия двигателя постоянного тока.

    Циклы двигателя

    Под циклом подразумеваются действия, которые повторяются в отдельном цилиндре. Четырехтактный мотор оснащается механизмом, который обеспечивает срабатывание каждого из этих циклов.

    В ДВС поршень выполняет возвратно-поступательные движения (вверх/вниз) по цилиндру. Шатун и кривошип, закрепленный на нем, преобразует эту энергию во вращение. Во время одного действия – когда поршень доходит от нижней точки до верхней и обратно – коленчатый вал делает один оборот вокруг своей оси.

    Чтобы этот процесс происходил постоянно, в цилиндр должна поступать воздушно-топливная смесь, она должна в нем сжиматься и воспламеняться, а также должны удаляться продукты горения. Каждый из этих процессов происходит за один оборот коленвала. Эти действия называются тактами. Всего в четырехтактнике их четыре:

    1. Впуск или всасывание. На этом такте в полость цилиндра всасывается воздушно-топливная смесь. Она поступает через открытый впускной клапан. В зависимости от типа топливной системы бензин смешивается с воздухом во впускном коллекторе или непосредственно в цилиндре, как, например, у дизелей;
    2. Сжатие. В этот момент как впускной, так и выпускной клапаны закрыты. Поршень идет вверх благодаря провороту коленвала, а он вращается за счет выполнения других тактов в смежных цилиндрах. В бензиновом моторе ВТС сжимается до нескольких атмосфер (10-11), а в дизеле – более 20атм.;
    3. Рабочий ход. В момент, когда поршень остановится в самом верху, сжатая смесь зажигается при помощи искры от свечи зажигания. В дизельном агрегате этот процесс несколько отличается. В нем воздух так сильно сжимается, что его температура подскакивает до значения, при котором солярка загорается самостоятельно. Как только происходит взрыв смеси топлива и воздуха, высвободившейся энергии некуда деваться, и она перемещает поршень вниз;
    4. Выпуск продуктов горения. Чтобы камера наполнилась свежей порцией горючей смеси, газы, образовавшиеся в результате воспламенения, необходимо удалить. Это происходит в следующем такте, когда поршень идет вверх. В этот момент открывается выпускной клапан. При достижении поршнем верхней мертвой точки цикл (или совокупность тактов) в отдельном цилиндре замыкается, и процесс повторяется.

    Принцип работы двигателя автомобиля – различия в моделях

    Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

    Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

    Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

    Источник

    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]